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ABSTRACT
This paper presents a method for the discovery of repeated vo-
cal patterns directly from music recordings. At a first stage,
a voice detection algorithm provides a rough segmentation of
the recording to vocal parts, based on which an estimate of
the average pattern duration is computed. Then, a pattern de-
tector which employs a sequence alignment algorithm is used
to yield a ranking of pairs of matches of the detected voiced
segments. At a last stage, a clustering algorithm produces the
final repeated patterns. Our method was evaluated in the con-
text of flamenco music for which symbolic metadata are very
hard to produce, yielding very promising results.

Index Terms— Pattern discovery, flamenco music.

1. INTRODUCTION

The development of algorithms for the automated discovery
of repeated melodic patterns in musical entities is an im-
portant problem in the field of Music Information Retrieval
(MIR) because the extracted patterns can serve as the basis for
a large number of applications, including music thumbnail-
ing, database indexing, similarity computation and structural
analysis, to name but a few.

Recently, a related task, titled “Discovery of Repeated
Themes and Sections” was carried out in the context of the
MIREX evaluation framework [1] and provided a state-of-
the-art performance evaluation of the submitted algorithms.
Most solutions to this task have so far used a symbolic rep-
resentation of the melody extracted from a score as a basis
for analysis [2]. However, when applying a state-of-the-art
symbolic approach to automatic transcriptions of polyphonic
pieces, [3] report a significant performance decrease.

In our study, we have chosen to focus on the automatic
discovery of repeated melodic patterns in flamenco singing.
This task poses several challenges given the unique features
of this music genre [4]. In contrast to other music genres,
flamenco is an oral tradition and available scores are scant,
almost limited to manual guitar transcriptions. Recently, an
algorithm to automatically transcribe flamenco melodies was
developed [5] and used in the context of melodic similarity [6]
and supervised pattern recognition [7]. However, the reported

accuracy of symbolic representations when compared to man-
ually annotated ground truth are still very low (note accuracy
below 40%). Furthermore, most symbolic-based approaches
rely on transcriptions quantised to a beat grid. However, in
flamenco, irregular accentuation and tempo fluctuations in-
crease the difficulty of rhythmic quantisation. Therefore, the
system described in [5] outputs a note representation which is
not quantised in time.

We propose an efficient algorithm for unsupervised pat-
tern discovery, which operates directly on short-term features
extracted from the audio recording, without computing a sym-
bolic interpretation at an intermediate stage. This type of
analysis can be also encountered in the context of structural
segmentation [8], [9], [10], [11], where, in contrast to our tar-
geted short motifs, an audio file is segmented into long repeat-
ing sections that capture the form of a music piece. In [12], a
structural analysis technique is adopted to extract shorter re-
peated patterns from monophonic and polyphonic audio and
the work in [13] uses dynamic time warping for inter- and
intra-recording discovery of melodic patterns based on pitch
contours.

Our method is applied on the analysis of the flamenco
style of fandangos de Huelva, in which pattern repetition is
a frequent phenomenon, mainly due to the folk nature of this
style and its popularity in festivals. The discovered repeated
patterns can be readily used for the establishment of “char-
acteristic signatures” in groups of flamenco songs. In addi-
tion, they can play an important role in inter-style studies for
the discovery of similarities among different musical entities
and in ethnomusicological studies which aim at tracking the
evolution of the cultural aspects of flamenco styles over the
years [14]. The research contribution of our approach lies in
the development of an efficient algorithm for the discovery of
vocal patterns directly from the music recording (circumvent-
ing the need for symbolic metadata) and its application in the
field of flamenco music.

The paper is structured as follows: the next section
presents the singing voice detection algorithm, Section 3 de-
scribes the pattern duration estimator, Section 4 presents the
pattern discovery algorithm which operates on the extracted
voiced segments and Section 5 describes the evaluation ap-
proach. Finally, conclusions are drawn in Section 6.
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2. VOCAL DETECTION

As we are targeting repeated patterns in vocal melodies, we
first detect sections in which the singing voice is present based
on low-level descriptors which exploit the limited instrumen-
tation of the music under study (mainly vocals and guitar).
Note that related methods that detect vocal segments [15],
[16] have so far mainly focused on commercial Western type
music (where instrumentation varies a lot) and use machine
learning algorithms to discriminate between voiced and un-
voiced frames. Of course, such approaches may be alterna-
tively used when the instrumentation becomes more complex.

The proposed vocal detector is based on the fact that when
analysing the spectral domain, we observe an increased spec-
tral presence in the range 500Hz-6kHz due to the singing
voice (compared to pure instrumental sections). We there-
fore extract the spectral band ratio, b(t), of the normalised
spectral magnitude, |X(f, t)|, using a moving window size
of 4096 samples and a hop size of 128 samples (assuming a
sampling rate of 44100Hz), as follows:

b(t) = 20 · log10

(∑f≤6000
f≥500 |X(f, t)|∑f≤400
f≥80 |X(f, t)|

)
(1)

where X(f, t) is the Short-time Fourier Transform of the sig-
nal. As we are mainly dealing with live stereo recordings,
where the voice is usually more dominant on one channel due
to the singer’s physical location on stage, we extract b(t) for
both channels and select the channel with the higher aver-
age value. Furthermore, we extract the frame-wise root mean
square (RMS) of the signal, rms(t), over the same windows
and estimate its upper envelope, rmsEnv(t), by setting each
RMS value to the closest local maxima, thus resulting into a
piece-wise constant function.

We now detect singing voice sections by combining the
information that is carried out by the previously extracted
spectral band ratio and the RMS envelop. Specifically, b(t)
is first shifted to a positive value by adding the minimum
value of the sequence and it is then weighted by the respec-
tive RMS value. The resulting sequence, v(t), is normalised
to zero mean. We then assume that positive values of v(t)
correspond to voiced frames and negative values to unvoiced
ones. In other words, our voicing function, voicing(t), is
the sign function, i.e., voicing(t) = sgn(v(t)). Obviously,
voicing(t) outputs binary values, which are then smoothed
with a moving average filter (30ms long). The resulting se-
quence, c(t), takes values in [0, 1] and can be interpreted as a
confidence function for the segmentation algorithm in Section
4. An overview of the process is given in Figure 1.

3. PATTERN DURATION ESTIMATION

The detected vocal segments are used to estimate a mean pat-
tern duration for each music recording which will be fed to the

Fig. 1. Vocal detection overview.

pattern detector (Section 4). Due to the rhythmic complex-
ity of this type of music and the non-trivial relation between
accentuation in accompaniment and vocal melody, common
beat estimation methods are not suitable for providing esti-
mates of pattern durations. Therefore, we proceed to defining
a vocal onset detection function, p(t), assuming that strong
vocal onsets coincide with large (positive) changes in the vo-
cal part of the spectrum and also with a volume increase. To
this end, for each frame, the spectral band ratio difference
value, ∆b(t), is computed, by summing b(t) over all frames
within a segment of length lw=435 ms, before (bprev(t)) and
after (bpost(t)) each time instance, t:

∆b(t) = (bpost(t)− bprev(t)) · bpost(t)) (2)

In a similar manner, the RMS envelope difference func-
tion, ∆rmsEnv(t), is computed using the previous mid-term
windows. The combined onset detection function, p(t), is
then defined as p(t) = ∆b(t)

∆b
· ∆rmsEnv(t)

∆rmsEnv
· voicing(t)

We then define that vocal onsets coincide with those lo-
cal maxima of p(t) that exceed twice the average of p(t) over
all frames. Subsequently, we estimate a set of possible pat-
tern durations by analysing the distances between estimated
vocal onsets (starting points) in a histogram with a bin width
of 0.1 seconds. We assume that the peak bin of the histogram
corresponds to a short rhythmical unit and we take its smallest
multiple larger than 3 seconds as the average pattern duration,
durMIN .

4. PATTERN DETECTION

After the voicing confidence function, c(t), and the estimated
pattern duration have been computed, we proceed to detect-
ing pairs of similar patterns and then use a clustering scheme
to create clusters of repeated patterns. We first apply a simple
segmentation scheme on sequence c(t). Namely, any subse-
quence of c(t) that lies between two subsequences of zeros
is treated as an audio segment containing singing voice, pro-
vided that its duration is at least half the estimated pattern
duration length.

At the next step, we extract the chroma sequence of the
audio recording [17] using a short-term processing tech-
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nique (window length and hop size are 0.1 s and 0.02 s,
respectively), normalize each dimension of the chroma vec-
tor to zero mean and unit standard deviation and preserve
the chroma subsequences that correspond to the previously
detected voiced segments. Due to the microtonal nature of
the music under study, a 24-bin chroma vector representation
has been used. We adopted a chroma-based representation
because pitch-tracking methods on this type of music corpora
have so far exhibited error prone performance and in addi-
tion, the chroma vector has shown to provide good results on
music thumbnailing applications [17]. Note that our method
does not exclude the use of other features or feature combi-
nations. The output of the feature extraction stage, is a set of
M sequences, Xi, i = 1, . . . ,M , of 24-dimensional chroma
vectors (of possibly varying length).

4.1. Pairwise matching

We then examine pairwise the extracted chroma sequences us-
ing a sequence alignment algorithm. The main characteristics
of this algorithm are that (a) it operates on a similarity grid,
(b) it uses the cosine of the angle of two chroma vectors as a
local similarity measure, and (c) it uses a gap penalty for hor-
izontal and vertical transitions among nodes of the grid. The
result of the sequence alignment procedure can be a matching
of subsequences, which is a desired property in our case, be-
cause there is no guarantee that the extracted voice segments
are accurate with respect to duration and time offset.

To proceed with the description of the sequence alignment
algorithm and for the sake of simplicity of notation, let X =
{xi, i = 1, . . . I} and Y = {yj , j = 1, . . . J} be two chroma
sequences that are being aligned. We assume that X is placed
on the horizontal axis of the matching grid. Also, let s(j, i),
be the local similarity of two vectors yj and xi, defined as

the cosine of their angle, s(j, i) =
∑L

k=1 yj(k)xi(k)√∑L
k=1 y2

j (k)
√∑L

k=1 x2
i (k)

,

where L = 24.
We then construct a JxI similarity grid and compute the

accumulated similarity at each node. To achieve this, dynamic
programming is used. Specifically, the accumulated similar-
ity, H(j, i), at node (j, i) of the grid, is defined as

H(j, i) = max


H(j − 1, i− 1) + s(i, j)−Gp,
H(j, i− k)− (1 + kGp), k = 1, . . . , Gl,
H(j −m, i)−(1 + mGp), m = 1, . . . , Gl,
0

(3)
where j ≥ 2, i ≥ 2, Gp is the gap penalty and Gl is the max-
imum allowed gap length (measured in number of chroma
vectors). In Section 5, we provide recommended values for
Gp and Gl for the corpus under study. Note that a diagonal
transition contributes the quantity s(i, j)−Gp, which can be
positive or negative, depending on how similar yj and xi are.
Furthermore, each deletion (vertical or horizontal) introduces

a gap penalty equal to (1 + k ×Gp), where k is the length of
the deletion (measured in number of frames).

For each node of the grid, we store the winning prede-
cessor, W (j, i). If H(j, i) is zero for some node, W (j, i)
is set equal to the fictitious node (0, 0). Upon initializa-
tion H(j, 1) = max{S(j, 1) − Gp, 0}, j = 1, . . . , J, and
H(1, i) = max{S(1, i) − Gp, 0}, i = 1, . . . , I . In addition,
W (j, 1) = (0, 0), j = 1, . . . , J, and W (1, i) = (0, 0), i =
1, . . . , I .

After the whole grid has been processed, we locate the
node that has accumulated the highest (matching) score, and
perform backtracking until a (0, 0) node is reached. The re-
sulting best path reveals the two subsequences that yield the
strongest alignment. The matching score is then normalized
by the number of nodes in the best path sequence. In this way,
the matching score is not biased against shorter paths.

If the lengths of both subsequences corresponding to the
best path do not exceed half the estimated pattern length, we
select the node with the second largest accumulated score and
perform again the backtracking procedure. This is repeated
until we detect the first pair of subsequences that exhibit suf-
ficient length. If no such subsequences exist, the original
chroma sequences, X and Y are considered to be irrelevant.

After the pairwise similarity has been computed for all
voiced segments, we select the K higher values, where K is a
user defined parameter (in our study the best results were ob-
tained for K = 15). The respective best paths reveal the end-
points (frame indices) of the subsequences that were aligned.
We therefore end up with a set, P , of K pairs of patterns,

P = {{(t11, t12), (t13, t14)}, . . . , {(tK1, tK2), (tK3, tK4)}}

where {(ti1, ti2), (ti3, ti4)} denotes that the pattern (chroma
sequence) starting at frame index ti1 and ending at frame in-
dex ti2 has been aligned with the pattern starting at ti3 and
ending at ti4.

4.2. Pattern clustering

The goal of this last stage is to exploit the relationship of
the extracted pattern pairs by means of a simple clustering
algorithm. We propose a simple, frame-centric clustering
scheme. This is not an optimal scheme in any sense but it is
of low computational complexity and yields acceptable per-
formance. The investigation of more complicated approaches
is left as a topic of future research.

The proposed scheme is based on the observation that a
frame (chroma vector) can be part of one or more pattern
pairs. To this end, we assume that the i-th pattern pair is
represented by its index, i. Therefore, a set of such indices
(frame label) can be directly associated with each feature vec-
tor. For example, if the m-th chroma vector is encountered in
the 3rd and 4th pattern pairs, the respective frame label will
be the set {3, 4}. In general, by simple observation of the
extracted pattern pairs, the m-th frame will be assigned the
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label cm = {l1, l2, . . . , lm}. If a frame has not been part of
any pair, the respective label is set equal to the empty set.

In this way, we generate a sequence, C, of frame labels,
i.e, C = {c1, c2, . . . , cN}, where N is the length of the music
recording (measured in frames). We then define that a subse-
quence of C starting at frame i and ending at frame j forms a
maximal segment if

ck ∩ ck+1 6= ∅,∀i ≤ k ≤ j − 1 (4)
ci−1 ∩ ci = ∅ or ci−1 = ∅ (5)
cj ∩ cj+1 = ∅ or cj+1 = ∅ (6)

All maximal segments can be easily detected by scanning se-
quence C from left to right: condition (5) is used to detect
candidate starting points, condition (4) is used for expanding
segments and condition (6) serves to terminate the expansion
of a segment to the right. Each time a maximal segment is
completed, its label is set equal to the union of the labels of
all its frames. After all maximal segments have been formed,
we assign to the same cluster all segments with the same label.
In this way, we expect that each cluster will contain segments
which represent repetitions of a prototypical pattern. Figure
4.2 presents the output of our method for a music recording,
including ground truth and the estimated starting points (with
stars). Circles mark errors. Repeated patterns 3 and 4 failed
to be discovered and pattern 2 was mistakenly clustered with
pattern 1. The latter is due to the fact the pattern 2 is very
similar to pattern 1 even when perceived by a human listener.
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Fig. 2. Discovered patterns and ground truth (bottom).

5. EVALUATION

We evaluate our system on a corpus consisting of 11 record-
ings of ”fandangos”, a flamenco singing style. Flamenco ex-
perts manually annotated the repeated patterns in each track.
The number of patterns per track varies between 3 to 7, with 7
out of 11 tracks exhibiting 4 different repeated patterns. The
number of instances per pattern varies from 2 to 9, with most
patterns exhibiting 2 or 3 instances. Pattern durations lie in
the range [1.5, 5.8] s, with the majority of patterns being at
least 3 s long.

In order to evaluate the performance of the proposed
method, we follow the approach adopted by the previously
mentioned MIREX task and compare to the audio-based ap-
proach in [12] (referred to as NF-14 in the presented results).
It should be mentioned that this baseline method is not tar-
geting the singing voice in particular and assumes a constant
tempo, which is not necessarily a valid assumption for the
genre under study.

It has to be noted that, although the MIREX task evolves
around MIDI annotations and synthetic audio, it defines two
categories of performance measures that can be readily ap-
plied in our study. The first category includes establishment
precision, PrEst, establishment recall, REst and establish-
ment F-measure, FEst. The second category includes occur-
rence precision, PrOcc, occurrence recall, ROcc and occur-
rence F-measure, FOcc. The term establishment means that
a repeated pattern has been detected by the algorithm, even
in the case when not all instances of the pattern have been
discovered. On the other hand, the occurrence performance
measures quantify the ability of the algorithm to retrieve all
occurrences of the repeated patterns. For details on the com-
putation of these performance measures, the reader is referred
to [3] and the aforementioned MIREX competition task [1].

As it was described in Section 4, our method uses three
parameters during the pattern detection stage, namely the gap
penalty, Gp, the gap length, Gl, and the number, K, of highly
ranked pair matches. Figure 3 presents the establishment and
occurrence F-measures for different value combinations of
Gp and Gl, assuming K = 15. It can be seen that a good
trade-off between FEst and FOcc can be achieved when Gp =
0.1 and Gl = 0.6. For this combination of values, FEst ≈
0.60, and FOcc ≈ 0.33. Table 1 presents how parameter K

K=10 K=15 K=20 NF-14

PrEst 0.43 0.48 0.50 0.63
REst 0.71 0.80 0.78 0.37
FEst 0.54 0.60 0.61 0.47
PrOcc 0.23 0.23 0.22 0.30
ROcc 0.32 0.56 0.50 0.07
FOcc 0.27 0.33 0.31 0.11

Table 1. Performance measures for different values of K
(Gp = 0.1 and Gl = 0.6). NF-14 is the baseline method.

affects the performance measures and gives a comparison to
the baseline method. It can be observed that K = 15 is in-
deed a reasonable choice for this parameter. Furthermore, it
can be seen that for both establishment and occurrence, the
baseline method exhibits a slightly higher precision, but since
its recall is low, the resulting F-measures are inferior to our
approach. For our method, establishment and occurrence re-
call are higher than their precision counterparts. This means
that the method is capable of detecting the annotated repeated
patterns to the expense of certain noise in the results.
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(a) Establishment F-measure (b) Occurrence F-measure

Fig. 3. Performance curves for different values of Gp over Gl

(in seconds), when K = 15.

6. CONCLUSIONS

This paper presented a computationally efficient method for
the discovery of repeated vocal patterns directly from the mu-
sic recording. Our study focused on flamenco music genre of
“Fandangos”, for which state-of-the-art pitch extraction algo-
rithm provide noisy results, making the music transcription
task (MIDI transcription) a hard one. The proposed method
can be seen as a voice detection module followed by a pattern
detector, in the heart of which lies a sequence alignment al-
gorithm. Our evaluation study has indicated that the proposed
approach performs satisfactorily and the reported evaluation
results are in line with the performance of algorithms work-
ing on symbolic data for the MIREX task of repeated pattern
finding. By adapting the vocal detection to a given instrumen-
tation, the approach can be adapted to other singing traditions
with similar characteristics.
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