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ABSTRACT

Recently, there has been a surge of interests in paradigms
such as device-to-device (D2D) communications and radio
frequency energy harvesting (RFEH) to improve the spectrum
as well as energy efficiencies of next-generation decentralized
cognitive radio networks. However, little attention has been
paid to the dual but competing task of subband selection of
any desired bandwidth in D2D mode (i.e., opportunistic va-
cant spectrum access) and RFEH mode as well as need to
minimize the subband switching cost (SSC) for an efficient
implementation. Taking these factors into account, a new
D2D-RFEH policy is proposed. It consists of: 1) Bayesian ap-
proach based Tunable Thompson Sampling (TTS) algorithm
to learn subband statistics, 2) Subband access scheme em-
ploying TTS algorithm for minimizing collisions among the
secondary users, and 3) Mode selection scheme. The simu-
lation results, complexity and SSC analysis validate the su-
periority of the proposed policy over the policies employing
frequentist approach based learning algorithms.

Index Terms— Device to device communications, Radio
frequency energy harvesting, Thompson Sampling

1. INTRODUCTION

Further boosting the spectrum and energy efficiencies are the
primary goals of next-generation wireless communication
networks such as 5G and Long Term Evolution-Advanced
(LTE-A) [1–5]. As a result, there has been a surge of interests
in the promising techniques such as device-to-device (D2D)
communications and radio frequency energy harvesting
(RFEH) from the academia and industrial partners [1–5]. The
D2D communications in cognitive radio networks (CRNs)
allow direct communication between secondary users (SUs)
over identified vacant licensed subband(s). The RFEH is a
new trending technique which facilitates the conversion of re-
ceived RF signals into electricity, in the range of mW, which
can be supplied for data transmission. It is expected that more
efficient techniques will be available in the near future along
with an international standard for RFEH.

Dynamic spectrum learning and access (DSLA) in decen-
tralized CRNs consisting of multiple SUs is an important re-
search problem [6–9]. Nonetheless, this task has now become
more challenging in CRNs consisting of RFEH enabled SUs.
This is because, occupied subbands with higher RF energy are
the optimum subbands in RFEH mode while the vacant sub-
bands of any desired bandwidth and lower RF energy are the
optimum subbands in the D2D mode. Furthermore, tunable
bandwidth requirements of 5G and LTE-A must be taken into
account to support wide variety of services ranging from data
to multimedia. From energy efficiency perspective, subband
switching cost (SSC), i.e. total penalty incurred in terms of
reconfiguration delay, energy consumption and protocol over-
head when a SU switches the frequency subband, should be as
minimum as possible. The design of an efficient D2D-RFEH
policy with tunable bandwidth access, lower SSC and com-
putational complexity is the objective of the proposed work.

The proposed D2D-RFEH policy, for next-generation de-
centralized CRNs of multiple RFEH enabled SUs, consists of:
1) Tunable Thompson Sampling (TTS) online learning algo-
rithm to learn subband statistics, 2) Subband access scheme
for orthogonalization of SUs, and 3) Mode selection scheme
to decide when to switch from D2D mode to RFEH mode and
vice versa. To the best of our knowledge, the proposed D2D-
RFEH policy is the first which is designed using Bayesian
approach based TTS algorithm compared to existing policies
which are designed using frequentist approach based learn-
ing algorithms. Additionally, the proposed subband access
scheme employs TS algorithm to minimize SSC, as against
the randomization approach in existing policies. The simu-
lation results validate the superiority of the proposed policy
over existing policies. In the next Section, system model and
literature review are discussed. The proposed policy is pre-
sented in Section 3 followed by the performance analysis in
Section 4. Section 5 concludes the paper.

2. SYSTEM MODEL AND LITERATURE REVIEW

Consider the slotted CRN consisting of multiple primary
users and M RFEH enabled SUs. The desired vacant band-
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width of SUs is denoted by Bv(k), k ∈ {1, 2, ...,M}. Con-
sider the bandwidth of wideband input signal is divided into
N uniform subbands of smallest PU channel bandwidth,
Bcmin where Bcmin=(1/N ) on the normalized frequency
scale. Let ith subband switches its state from being vacant
to occupied and vice versa according to discrete Markov pro-
cess with probabilities, pivo and piov , respectively. Then, using
Markov chain analysis, steady-state probabilities of subband
being vacant, denoted as Pvac(i), i ∈ {1, 2, ...N}, are [5]

Pvac(i) =
piov

piov + pivo
∀i (1)

Basic assumptions are: 1) Infrastructure-less decentral-
ized CRN where all SUs employ the same policy but do not
exchange any information with other SUs, 2) D2D and RFEH
modes use same hardware interface which means that simul-
taneous D2D communications and RFEH are not possible,
3) SU can sense only one subband in each time slot, 4) Sub-
bands occupied by SUs are not useful for RFEH due to lower
RF energy, 5) Pvac(i), ∀i are unknown to SUs.

In D2D mode, when multiple SUs transmit on the non-
orthogonal frequency subbands, collision occurs and SU does
not get any reward i.e.,Bc(k) =0. When no such collision oc-
curs, it is assumed that the SU transmits successfully and gets
the positive integer reward, Bc(k) = (Bv(k)/Bcmin),∀k.
Then, ru(k, t) = ru(k, t − 1) + Bc(k). For each data trans-
mission attempted over bandwidth Bcmin, the battery charge
is reduced by βd. In RFEH mode, for each occupied subband
of bandwidth, Bcmin and energy β, the battery capacity is in-
creased by βs = β − βr where βr is charge for harvesting
bandwidth, Bcmin. It can be safely assumed that βr = ξ · βd,
βd = θ · βs where ξ < 1 and θ ≥ 1. Let S∗(t) and S(t) de-
note the total reward of the genie-aided policy (i.e., the policy
where Pvac(i), ∀i are known a priori and no collisions among
SUs) and the decentralized D2D-RFEH policy, respectively.
Then, the total regret U(t) of the CRN upto time t is given by
Eq. 2 [6–9] and should be as small as possible.

U(t) = S∗(t)− S(t) =

M∑
k=1

t−1∑
v=0

[r∗u(k, v)− ru(k, v)] (2)

2.1. DSLA in Decentralized CRNs without RFEH

Various DSLA schemes have been proposed for orthogonal-
ization of SUs to optimum vacant subbands in decentralized
CRNs [6–9]. In policy, ρrand [6], each SU randomly and
independently choses the rank, R(k) ∈ {1, 2, ..M} in the
beginning. In each time slots, underling learning algorithms
such as upper confidence bound (UCB), ε−greedy, etc., cal-
culate the quality index for each subband. Then, the SU with
the rank R(k) choses the subband with the R(k)th best qual-
ity index. Another policy in [7] follows time division fare
share approach where the rank of each SU is rotated in cir-
cular fashion from 1 to M to allow an equal access to the

optimum subbands among all SUs. Though both policies are
mathematically proved to be optimal, the SSC of [7] is very
high compared to that of [6]. In [8, 9], we proposed variable
filtering architecture and its integration with tunable extension
of ρrand , ρt rand, to support the tunable bandwidth require-
ments of SUs. However, average SSC of [6–9] is high.

2.2. DSLA in Decentralized CRNs with RFEH

Recent research efforts investigating the different ways to
adopt RFEH in CRNs are available in [2–5]. In [2], D2D-
RFEH policy for centralized CRNs has been investigated
while the case of decentralized CRNs is taken in this paper.
The optimization based policy in [3] and learning based pol-
icy in [4] consider the subband selection for RFEH enabled
SUs in CRNs while decision making policy in [5] deals with
the switching actions between two modes with known sub-
band statistics. Though all these policies are proved to be
optimal, they are designed for single SU CRNs which means
that the SU collisions and their effect on the total reward of
the decentralized CRNs has not been considered. An opti-
mization based policy in [3] is computationally complex and
may not be feasible for battery-operated resource-constrained
SU terminals. Hence, online learning algorithm based poli-
cies need to be investigated. Furthermore, the use of Bayesian
approach based learning algorithms to minimize SSC without
compromising on the reward/regret as well as the effect of
mode switching decisions on the performance of D2D-RFEH
policy have not been explored yet in the literature.

3. PROPOSED D2D-RFEH POLICY

Proposed policy comprised of three sub-sections which are:

3.1. Online Learning Algorithm

As discussed, the task of an online learning algorithm has be-
come more challenging due to RFEH mode. A learning algo-
rithm must identify vacant subbands of any desired bandwidth
with low RF energy as well as occupied subband with higher
RF energy. The design of such algorithm is discussed below.

The basic idea of Thompson Sampling (TS) algorithm is
to assume some prior distribution on the probability statistics
of each subband (e.g. uniform prior) and at any time slot,
sample the subband according to its posterior probability of
being the optimum [10,11]. The main reasons for chosing TS
algorithm for the proposed D2D-RFEH policy are:
1. An online learning algorithm is said to be optimal in sub-

band selection task if [10–12]

lim inf
t→∞

E[T̄ (k, i, t)]

ln t
≥ 1

K(Pvac(i), Pvac(i∗))
, ∀i (3)

where
i∗ = arg max

i
Pvac(i) (4)
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where T̄ (k, i, t) denotes the number of time slots upto t
slots where the subband i is sensed by kth SU, K(p, q)
denotes the Kullback-Leibler divergence factor and equal-
ity sign in Eq. 3 corresponds to an asymptotically optimal
algorithm. Though frequentist approach based UCB, op-
timization based KL-UCB [12], Bayesian approach based
TS and Bayes-UCB algorithms [10] have been proved
to be asymptotically optimal for Bernoulli rewards, it
has been just recently proved that the scaling constant of
Bayesian algorithms is better than that of others [10, 11].

2. Bayesian subband sampling approach allows these algo-
rithms to have lower SSC than UCB algorithm or its ex-
tensions through empirical observations.

3. TS is a least complex Bayesian algorithm since it requires
just one sample from the posterior of subband statistics
when compared to optimization problem in KL-UCB and
computation of quantiles in Bayes-UCB [10–12].
To the best of our knowledge, usefulness of TS algorithm

for DSLA applications in decentralized CRNs has not been
studied yet. Furthermore, existing TS algorithm needs to be
re-designed to take into account the tunable bandwidth sce-
narios, i.e., Bv(k) > Bcmin. For example, in D2D mode,
when Bv(k) = Bcmin, then the corresponding kth SU can
chose any one of ND(k) = N orthogonal subbands and
hence, the SUs selecting distinct subbands would not experi-
ence collision. However, when Bv(k) > Bcmin, the number
of subband choices for the corresponding kth SU is reduced
to ND(k) = [N + 1 − Bc(k)] non-orthogonal subbands. In
such case, the SUs transmitting on distinct subbands may ex-
perience collision due to non-orthogonality of subbands. By
taking these factors into account, TTS algorithm is proposed
which is given in Algorithm 1.

  Algorithm 1: Tunable Thompson Sampling Algorithm for kth 
                          Secondary User in D2D Mode 

Parameters: 				ܰ,ܯ,ܰ஽(݇),ܤ௩ ,ܴ(݇), ݈௞ ∈ {1,2, . . ,ܰ஽(݇)}                         
Input:               ݎ௦(݇, : , ݐ − 1), T஽(݇, : , ݐ − 1) 
Output: 														ܫ஽(݇,  (ݐ
 
If (ܽ݊ݕ(T஽(݇, : , ݐ − 1) == 0)) 
,݇)஽ܫ                           (ݐ = 	 ݈௞ .ݏ		 .ݐ T஽(݇, ݈௞ , ݐ − 1) = 0 
Else   

௞ߙ .1 = exp ቆ඄
∑ ⌈஻ೡ(௣)∙ே⌉ಾ
೛సభ

஻ೡ(௞)∙ே
ඈ ∙ ௩(݇)ቇܤ ,																					∀݈௞  

,݇)ܤ .2 ݈௞) = ௞ߙ)ܽݐ݁ܤ	 ∙ r௦(݇, ݈௞ , ݐ − 1) + 1, 
								T஽(݇, ݈௞ , ݐ − 1) − ௞ߙ ∙ r௦(݇, ݈௞ , ݐ − 1) + 1)						∀݈௞ 	  
,݇)஽ܫ .3 (ݐ = ݈௞ ௧௛(݇)ܴ	݋ݐ	݃݊݅݀݊݋݌ݏ݁ݎݎ݋ܿ	 		 

End                       														݉ܽ݁ݑ݈ܽݒ.ݔ	݂݋	ܤ)(݇, ݈௞)) 
      	 

 
In the proposed TTS algorithm, parameter, αk, is in-

troduced to minimize the number of collisions due to non-
orthogonality of subbands and the rank, R(k) is obtained
using the scheme discussed in Section 3.2. If lthk subband
(which corresponds to ID(k, t) in Algorithm 1) is sensed as
vacant by kth SU at time t, then

rs(k, lk, t) = rs(k, lk, t− 1) + 1 (5)

r̄s(k, ik, t) = r̄s(k, ik, t− 1) + 1, ∀ik (6)

where ik ∈ {lk, lk + 1, ..., lk − 1 + Bc(k)}. Otherwise,
rs(k, lk, t) = rs(k, lk, t − 1) and r̄s(k, ik, t) = r̄s(k, ik, t −
1), ∀ik. On the other hand, if lthk subband is observed as
occupied with its RF energy higher than (βd ·Bc(k)/θ), then

rrf (k, lk, t) = rrf (k, lk, t− 1) + 1 (7)

r̄rf (k, ik, t) = r̄rf (k, ik, t− 1) + 1, ∀ik (8)

Otherwise, rrf (k, lk, t) = rrf (k, lk, t−1) and r̄rf (k, ik, t) =
r̄rf (k, ik, t− 1), ∀ik. Finally,

TD(k, lk, t) =

t∑
p=1

1{ID(k,p)=lk} (9)

T̄ (k, ik, t) =

t∑
p=1

1{ID(k,p)⊇ik}, ∀ik (10)

XD(k, lk, t) =
rs(k, lk, t)

TD(k, lk, t)
, X̄(k, ik, t) =

r̄s(k, ik, t)

T̄ (k, ik, t)
, ∀ik

(11)

YD(k, lk, t) =
rrf (k, lk, t)

TD(k, lk, t)
, Ȳ (k, ik, t) =

r̄rf (k, ik, t)

T̄ (k, ik, t)
, ∀ik
(12)

where XD(k, lk, t) (or X̄(k, i, t), resp.) denotes the learned
probability of lthk (or ith, resp.) subband being vacant at kth

SU, YD(k, lk, t) (or Ȳ (k, i, t) resp.) denotes the learned prob-
ability of lthk (or ith, resp.) subband having RF energy higher
than (βd ·Bc(k)/θ) (or (βd/θ), resp.) at kth SU.

In the RFEH modes, R(k) = 1, ∀k and the task of
the TTS algorithm is to identify contiguous set of occupied
subbands with higher RF energy where the contiguous band-
width, Bo(k), should not be greater than but close to analog
front-end bandwidth, Bafe. Note that Bo(k) in RFEH mode
is equivalent to Bv(k) in D2D mode but Bv(k) is chosen
by SU while Bo(k) is chosen by TTS algorithm. Here, only
Bafe = Bcmin case is considered for the brevity of the paper
and the case of Bafe > Bcmin will be considered in exten-
sion of this work. Hence, NRF (k) = N and Bc(k) = 1.
The proposed TTS algorithm for RFEH mode is shown in
Algorithm 2. Similar to D2D mode, rs, r̄s, rrf and r̄rf
are updated in each time slot based on sensing outcome of
IRF (k, t). Similarly, TRF , XRF , YRF (which are equivalent
to TD, XD, YD, respectively in D2D mode) are also updated.
In this way, TTS algorithm learns from the sensing outcomes
in each mode.

3.2. Subband Access Scheme

The task of an access scheme, when implemented at all SUs
in decentralized CRNs, is to orthogonalize SUs operating in
D2D mode to the optimum vacant subbands. Since there are
no collisions among SUs in RFEH mode, orthogonalization
is not required. The design of the access scheme involves
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  Algorithm 2: Tunable Thompson Sampling Algorithm for kth 
                          Secondary User in RFEH Mode 

Parameters: 				ܰ,ܰோி(݇),ܤ௢ , ݈௞ ∈ {1,2, . . ,ܰோி(݇)}                          
Input:               ݎ௥௙(݇, : , ݐ − 1), Tோி(݇, : , ݐ − 1) 
Output: 														ܫோ(݇,  (ݐ
 
If (ܽ݊ݕ(Tோி(݇, : , ݐ − 1) == 0)) 
,݇)ோிܫ                           (ݐ = 	 ݈௞ .ݏ		 .ݐ 	Tோி(݇, ݈௞ , ݐ − 1) = 0 
Else   

௞ߙ .1 = exp൫ܤ௢(݇)൯,																					∀݈௞ 
,݇)ܤ .2 ݈௞) = ௞ߙ)ܽݐ݁ܤ	 ∙ r௥௙(݇, ݈௞ , ݐ − 1) + 1, 
							Tோி(݇, ݈௞ , ݐ − 1)− ௞ߙ ∙ r௥௙(݇, ݈௞ , ݐ − 1) + 1)							∀݈௞ 	  
,݇)ோிܫ .3 (ݐ = ݈௞  		݋ݐ	݃݊݅݀݊݋݌ݏ݁ݎݎ݋ܿ	

End                       														݉ܽ݁ݑ݈ܽݒ.ݔ	݂݋	ܤ)(݇, ݈௞)) 
      	 

 

two sub–problems: 1) Selection of new rank, R(k) when the
corresponding kth SU collides with other SUs, and 2) Tunable
range of rank, Lt(k) (referred to as tunable subset size in [8,
9]). The discussion in this section is restricted to (1) while
solution to (2) has been proposed in [8, 9].

Taking into account the superiority of learning algo-
rithms based subband selection schemes [6–9] over the ran-
dom subband selection scheme, a TS based rank assignment
scheme, replacing the conventional random rank assignment
scheme [6–9], is proposed as shown in Algorithm 3. Here,
TR(k, rk, t) denotes the number of time slots out of t where
R(k) = rk, rk ∈ {1, 2, .., Lt(k)} and C(k, rk, t) denotes the
number of time slots out of TR(k, rk, t) where kth SU ex-
periences collision. Note than R(k)=0 when SU is in RFEH
mode andR(k) = IR(k, t−1) in D2D mode. In [6,8,9], each
SU randomly updates their rank, R(k), after collision. This
approach is not fair to SUs with Bv(k) > Bcmin since the
number of collisions, and hence, SSC of such SU is higher
compared to SUs with narrower Bv(k). The first if loop in
the Algorithm 3 eliminates this unfairness. In the proposed
scheme, the use of TS algorithm guarantees that all SU will
eventually settle in different rank thereby leading to better
scaling constant than randomization based rank assignment
schemes [6–9] and hence, faster orthogonalization of SUs.

  Algorithm 3: Thompson Sampling Algorithm for Rank Selection 
                          at kth Secondary User in D2D Mode 

Parameters: 				ܮ௧(݇),ܤ௢ , ௞ݎ ∈ {1,2, . .                           {(݇)௧ܮ,
Input:               ݎ௥(݇, : , ݐ − 1),ܶ(݇, : , ݐ − 1) 
Output: 													ܫோ(݇,  (ݐ
If (Cோ(݇,ܴ(݇), 	݀݋݉	(ݐ ቀ஻ೡ(௞)

஻೎೘೔೙
ቁ= =0) 

If (any(Tோ(݇, : , ݐ − 1) == 0)) 
,݇)ோܫ                           (ݐ = 	 ௞ݎ .ݏ		 .ݐ 	Tோ(݇, ௞ݎ , ݐ − 1) = 0 

Else   

,݇)ܤ .1 (௞ݎ = ,݇)r௥)ܽݐ݁ܤ	 ௞ݎ , ݐ − 1) + 1, 
								Tோ(݇, ௞ݎ , ݐ − 1)− r௥(݇, ௞ݎ , ݐ − 1) + ௞ݎ∀							(1 	  
,݇)ோܫ .2 (ݐ = ௞ݎ  		݋ݐ	݃݊݅݀݊݋݌ݏ݁ݎݎ݋ܿ	

,݇)ܤ)	݂݋	݁ݑ݈ܽݒ.ݔܽ݉													  : )) 
      									End 
Else       ܫோ(݇, (ݐ = 	 ,݇)ோܫ ݐ − 1) 
End 

3.3. Mode Selection Scheme

In the proposed policy, each SU independently makes the
mode switching decision based on the available battery
charge, WB (0 ≤ WB ≤ 1) along with the given proba-
bilities of switching to RFEH mode (from D2D mode) and
from RFEH mode (to D2D mode), i.e., PRFI and PRFO,
respectively. It is assumed that the plot of PRFI (or PRFO)
vs. WB is similar to step function where {ε1, ε2} denotes
the WB at which there is step change in PRFI and PD2D,
respectively where ε1 < ε2 and {η1, η2} decides the slope of
these step functions, respectively. Ideally, the total reward (or
regret) of the policy should be independent of {ε1, ε2} values
(i.e., mode switching frequency), since many factors such
as location of SU, priority of data transmission, available
battery charge, type of service, future services and location
etc. might influence the mode switching decision in practice.
Intuitively, the proposed D2D-RFEH policy satisfies this re-
quirement since the mode switching events does not affect
performance of the policy. This will be verified using the
simulation results presented in the Section 4.

4. PERFORMANCE ANALYSIS

In this section, we evaluate and compare the total reward and
SSC of the proposed policy with the ρrand policy in [6] and
its extensions. The mode switching scheme is same as Sec-
tion 3.3 for all the policies. At the start, the batteries of all
SUs are 50% charged. Consider N=16 (i.e., Bcmin=1/16),
M ∈ {3, 4, ..12} and two Pvac distributions (case 11 and case
22). Each numerical result reported hereafter is the average of
the values obtained over 50 independent experiments.

ForM=5 andBv={1/16, 3/16, 2/16, 2/16, 1/16}, the plots
of average reward, St, in percentage vs. time slots, t, for case
11 and case 22 are shown in Figures 1a and 1b, respectively
where St % = [100 · (S∗t − St)/S

∗
t ] and S∗t is the average

reward of the genie-aided policy. The plots in Figures 1c and
1d for case 11 and case 22, respectively, correspond to the
conventional D2D mode with no need of RFEH. It can be
observed that the proposed policy offers 5–25% higher reward
(and hence, higher spectrum efficiency) than other policies.

Next, 50 different combinations of M ∈ {3, 4, .., 12},
Bv � (1/2) and Pvac ∈{case 11 and case 22} for seven
distinct scenarios are considered. Remaining parameters are
same as those in case of Fig. 1. In Fig. 2 (a), the compari-
son is made between different policies based on the average
reward, S(t) in % with respect to S(t) of the proposed pol-
icy. In Fig. 2 (b), the average SSC in % of different policies is
compared with respect to that of UCBB+ρrand policy where
UCBB corresponds to block UCB algorithm having lower
SSC than conventional UCB algorithm. In summary, the total
reward and SSC of the Bayesian algorithms based policies are

1Pvac :- [.05 .10 .15 .20 .25 .30 .35 .40 .45 .50 .55 .60 .65 .70 .90 .95]
2Pvac :- [.37 .04 .13 .01 .03 .17 .05 .50 .60 .06 .02 .35 .25 .99 .20 .10]

23rd European Signal Processing Conference (EUSIPCO)

1239



0 1 2 3 4 5
x 104

30

40

50

60

70

80

Slot number, t

R
ew

ar
d,

 S
(t)

 in
 %

UCB+rand [ ]
TS+rand

KL-UCB+rand

Bayes-UCB+rand

Proposed

6

(a)

0 1 2 3 4 5
x 104

30

40

50

60

70

80

90

Slot number, t

R
ew

ar
d,

 S
(t)

 in
 %

UCB+rand[8]
TS+rand

KL-UCB+rand

Bayes-UCB+rand

Proposed

6

(b)

0 1 2 3 4 5
x 104

30

40

50

60

Slot number, t

R
ew

ar
d,

 S
(t)

 in
 %

UCB+rand[8]
TS+rand

KL-UCB+rand

Bayes-UCB+rand

Proposed

6

(c)

0 1 2 3 4 5
x 104

40

50

60

70

Slot number, t

R
ew

ar
d,

 S
(t)

 in
 %

UCB+rand[8]
TS+rand

KL-UCB+rand

Bayes-UCB+rand

Proposed

6

(d)

Fig. 1. Average reward, S(t) in % vs. time slot, t, for (a) Case 1, (b) Case 2, in the D2D-RFEH scenario, (c) Case 1, (d) Case 2,
in the conventional DSLA scenario with no need of RFEH where {ε1, ε2} = {0.3, 0.4}, {η1, η2} = {8, 70}, ξ=0.1 and θ=4.
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Fig. 2. (a) The plot of average S(t) in % with respect to S(t) of the proposed scheme, (b) The plot of average SSC in % with
respect to S(t) of the UCB+ρrand policy in [6].

significantly better than frequentist approach algorithm based
policies. Among Bayesian policies, proposed policy not only
offers superior performance but also have lower complexity.

Since there is no constraint of collisions among SUs in
RFEH mode, average time spend by SUs in RFEH is nearly
same for fixed bandwidth RFEH (i.e. Bo(k) = Bcmin)
case. As a result, the gain in S(t) decreases as θ increases.
Nonetheless, it is expected that efficient RFEH circuits with
θ < 5 will be available in near future for which the proposed
policy offers more than 10% gain in S(t) over other policies.

5. CONCLUSIONS AND FUTURE WORKS

In this paper, a new dynamic spectrum learning and tunable
bandwidth access based device-to-device communications
and radio frequency energy harvesting (D2D-RFEH) policy
for decentralized cognitive radio networks (CRNs) is pro-
posed. Simulations results and complexity analysis showed
that the proposed policy offers superior performance over
the frequentist approach based policies making it suitable for
resource–constrained battery operated secondary users. Fu-
ture work considers tunable bandwidth access in RFEH mode
for faster RFEH thereby further improvement in reward.
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[10] E. Kaufmann, O. Cappé, and A. Garivier, “On the Efficiency of
Bayesian Bandit Algorithms from a Frequentist Point of View,” Neu-
ral Information Processing Systems (NIPS), Dec. 2011.

[11] D. Russo and B. V. Roy, “An Information-Theoretic Analysis of
Thompson Sampling, ” Computing Research Repository, Mar. 2014.
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