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ABSTRACT

Recovering low-rank tensors from undercomplete linear mea-

surements is a computationally challenging problem of great

practical importance. Most existing approaches circumvent

the intractability of the tensor rank by considering instead the

multilinear rank. Among them, the recently proposed ten-

sor iterative hard thresholding (TIHT) algorithm is simple and

has low cost per iteration, but converges quite slowly. In this

work, we propose a new step size selection heuristic for accel-

erating its convergence, relying on a condition which (ideally)

ensures monotonic decrease of its target cost function. This

condition is obtained by studying TIHT from the standpoint

of the majorization-minimization strategy which underlies the

normalized IHT algorithm used for sparse vector recovery.

Simulation results are presented for synthetic data tensor re-

covery and brain MRI data tensor completion, showing that

the performance of TIHT is notably improved by our heuris-

tic, with a small to moderate increase of the cost per iteration.

Index Terms— Low-rank Tensor Recovery, Tensor Com-

pletion, Iterative Hard Thresholding

1. INTRODUCTION

Tensors having (approximately) low rank arise in many prac-

tical applications. Whenever true, this property can in princi-

ple be exploited to recover a tensor of interest from undercom-

plete information given by linear observations, a task which is

ill-posed in general. An important special case of this setting

is the completion of a data tensor having missing entries under

the low-rank assumption. These problems, called low-rank

tensor recovery (LRTR) and tensor completion (TC), respec-

tively, are extensions of low-rank matrix recovery (LRMR)

and matrix completion [1], and find several applications such

as image inpainting [2], seismic signal processing [3], spec-

tral data recovery [4] and machine learning [5].

However, despite being a natural generalization of the ma-

trix rank, the tensor rank is not completely understood and is

computationally intractable [6]. Consequently, many existing

LRTR techniques rely instead on the multilinear rank, which

is a multi-valued quantity composed by the ranks of all mode-
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n matrix unfoldings [7,8]. This choice is motivated by the fact

that the tensor rank upper bounds the rank of each unfolding.

Among the major approaches, a common one is to seek

the joint minimization of the nuclear norms (NN) of the

mode-n unfoldings, instead of their ranks. Its popularity

stems from the effectiveness of the NN minimization (NNM)

approach for LRMR [1, 9]. In the tensor case, one usually in-

troduces a regularization functional given by a weighted sum

of the nuclear norms of these unfoldings [2, 4, 10]. Yet, [9]

shows that this cannot be more efficient, in terms of the mini-

mal number of measurements needed, than solely minimizing

the NN of the “best” unfolding in that sense, which is quite

far from the theoretical optimal [11]. Although the NNM

of a more “balanced” matrix unfolding can get closer to the

optimal number of necessary measurements [11], this applies

only to tensors of order P > 3, and a significant gap still

remains. Another possibility consists in directly estimating

a low-rank tensor model via alternating minimization of a

data-based error criterion, as in [5]. This performs often well

in practice, but can be quite difficult to analyze—to the best

of our knowledge, no global convergence proofs are known

for the alternating estimation of standard low-rank models,

unless additional regularization is used [12].

Recently, [13] has proposed a simple and effective algo-

rithm called tensor iterative hard thresholding (TIHT). Basi-

cally, it can be seen as a multilinear-rank-based variant of the

normalized IHT (NIHT) algorithm proposed in [14] for sparse

vector recovery. Even though no convergence proofs and per-

formance bounds exist yet for TIHT, it is simple to imple-

ment and is less costly than the above mentioned approaches.

However, its convergence speed observed in numerical exper-

iments is quite slow.

In this paper, we study the TIHT algorithm from the stand-

point of the majorization-minimization (MM) strategy pro-

posed in [14]. This enables us to obtain an upper bound for

the step size which guarantees that the iterates have monoton-

ically decreasing cost function values in the ideal case where

the best low-rank approximation computed at each iteration

is exact. Then, by exploiting this bound, we propose an algo-

rithm named improved-step-selection TIHT (ISS-TIHT) con-

taining a heuristic subroutine which attempts to find a step

size within a constant factor of its upper bound. Our sim-

ulation results show that this remarkably improves conver-
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gence speed, which significantly compensates for the increase

in computational cost.

2. TENSOR ITERATIVE HARD THRESHOLDING

Let T ∈ U = R
N1×···×NP be a P th-order tensor and de-

note by Tp the mode-p unfolding (matricization) of T [7].

The multilinear rank (m-rank) of T is a P -tuple given by

m-rank(T ) = (rank(T1), . . . , rank(TP )) [8].

In view of the computational difficulty of minimizing the

tensor rank, the LRTR problem is tackled in [13] by imposing

a component-wise bound r = (R1, . . . , RP ) on the m-rank

of the solution, which is sought in the least-squares sense in

Lr = {T ∈ U : rank(Tp) ≤ Rp, p = 1, . . . , P}. This leads

to the constrained formulation

min
T ∈Lr

J(T ), with J(T ) = ‖y − A (T )‖22 , (1)

where A : U 7→ R
M is a linear measurement operator and

y ∈ R
M is a given vector of measurements. We denote by A

the matrix representation of A such that A (T ) = A vec(T ),
where vec(·) stacks the elements of its argument in a long

vector. Note that (1) applies in particular to the TC problem,

where A is constrained to be a sampling operator; in other

words, A has M canonical vectors of RN1...NP as rows.

To solve (1), [13] proposes the TIHT algorithm

T k = Hr (T k−1 + µkA
∗ (y − A (T k−1))) , (2)

where A ∗ : RM 7→ U is the adjoint of A (i.e., A ∗(x) =
unvec(ATx), where unvec(·) is the inverse of vec(·)),
µk > 0 is a step size parameter and Hr : U 7→ Lr

maps a tensor T into the r-truncation of its higher-order

SVD (HOSVD). More concretely, writing this HOSVD as

T = S ×1 U
(1) ×2 · · · ×P U(P ), where S ∈ U is the core

tensor and U(p) ∈ R
Np×Np is the matrix of pth-mode singu-

lar vectors, Hr(T ) = S̄ ×1 Ū
(1) · · · ×P Ū(P ), where Ū(p)

contains the first Rp columns of U(p) and S̄ ∈ R
R1×···×RP

satisfies [S̄]r1,...,rP = [S]r1,...,rP for all rp ∈ {1, . . . , Rp}.

The formula given in [13] for µk can be written as

µk = ‖Gk−1‖2F ‖A (Gk−1)‖−2
2 , (3)

where Gk−1 , −A ∗ (y − A (T k−1)). It is easy to show

that, in the TC setting, µk = 1 and the TIHT algorithm is

equivalent to the HOSVD-based scheme proposed in [3] (with

a = 1), because of the special form of A .

As 2Gk−1 is the gradient of J at T k−1, one can see that

TIHT first updates the current estimate T k−1 with a gradient

descent step and then computes an approximation of the result

in the feasible set. This is therefore very similar in spirit to the

projected gradient algorithm [15], in which such approxima-

tion is the projection onto the feasible set. Yet, as project-

ing onto Lr amounts to solving a best rank-(R1, . . . , RP ) ap-

proximation problem, which is NP-Hard [6] and requires us-

ing costly algorithms (see, e.g., [16]), a low-rank approxima-

tion given by the truncated HOSVD is used instead. This is a

widely used technique which, despite being suboptimal, gives

an approximant satisfying ‖Hr(T ) − T ‖F ≤
√
P‖T b −

T ‖F , where T b is a minimizer of the Euclidian distance to

T in Lr [8]. Apart from the suboptimality of Hr, it is im-

portant to point out that the optimality condition underlying

the projected gradient algorithm applies only to convex feasi-

ble sets [15], which is not the case for Lr. One might then

wonder how TIHT actually achieves recovery.

In the following, relying on the optimization strategy de-

veloped by [14], we further study the TIHT algorithm. This

study will then serve as a basis for devising a new step size

selection routine in order to improve its convergence speed.

3. MONOTONICALLY DECREASING OBJECTIVE

VALUES VIA MAJORIZATION-MINIMIZATION

The NIHT algorithm proposed in [14] is based on a clever

MM strategy devised to minimize ‖y −Φx‖22 subject to x ∈
Vs ⊂ R

N , where Vs is the subset of s-sparse vectors of RN

and y ∈ R
M is the linear measurement of an s-sparse vec-

tor of interest given by Φ ∈ R
M×N . As shown in [14], the

NIHT iterates have monotonically decreasing cost function

(or objective) values and are convergent. Yet, whether this

strategy promptly carries over to other similar problems, as

(1), is not immediately clear. In what follows, we show that

this is true for problem (1) and that the TIHT algorithm can

be interpreted as an extension of this MM approach.

Recall that, to minimize a cost function J , an MM algo-

rithm proceeds by minimizing instead at each iteration k a

surrogate function Jk which majorizes J and coincides with

it at the current estimate. It is not difficult to see that iterates

computed in that manner are driven downhill with respect to

J . The interest lies in the possibility of constructing surro-

gate functions Jk which are easier to minimize than J under

the considered constraints.

In the case of TIHT, given the current estimate T k−1 and

a constant µk such that

Jk(T ) , µkJ(T )+‖T − T k−1‖2F−µk ‖A (T − T k−1)‖22
(4)

satisfies µkJ(T ) < Jk(T ) for all T 6= T k−1, we mini-

mize Jk over Lr to obtain a new estimate T k. Note that

such a µk always exists, since we can choose it such that

0 < µk < ‖A ‖−2. Hence, if the minimizer T k of Jk over Lr

satisfies T k 6= T k−1, then we have µkJ(T k) < Jk(T k) ≤
Jk(T k−1) = µkJ(T k−1), thus yielding J(T k) < J(T k−1).

Let us now consider the minimization of Jk over Lr. Re-

placing J(T ) by (1) in (4), we have Jk(T ) = ‖T − T k−1‖2F
+µk‖y‖22 − 2µk〈y−A (T k−1),A (T )〉 − µk‖A (T k−1)‖22,

which is clearly strictly convex. Therefore, solving J ′

k(T
⋆) =

0 yields the unique unconstrained minimizer

T ⋆ = T k−1 + µkA
∗(y − A (T k−1)). (5)

Now, for any S ⊂ U and all T ∈ U , let us define ΠS :
U 7→ 2S , where 2S denotes the power set of S, as ΠS(T ) =
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argminX∈S ‖X − T ‖F . Clearly, if S is a closed nonempty

convex set, ΠS(T ) contains exactly one element: the pro-

jection of T onto S. If S is not convex but is closed and

nonempty, then ΠS(T ) is still nonempty (by the extreme

value theorem, coercivity and continuity of ‖X − T ‖F ), but

might contain multiple elements. Relying on the definition of

ΠS , the next result shows how a minimizer of Jk over Lr can

be obtained from T ⋆.

Proposition 3.1. Let S ⊂ U be a closed nonempty set. Then,

ΠS(T
⋆) is the set of minimizers of Jk(T ) over S, where T ⋆

is given by (5).

Proof. Since S is closed and nonempty, Jk is continuous and

Jk(T ) → ∞ for ‖T ‖F → ∞, Jk admits at least one mini-

mum in S. Also, for any T ∈ S, we can write T = T ⋆ +Z

for some Z ∈ U and then rewrite Jk as

Jk(T
⋆ +Z) = Jk(T

⋆) + ‖Z‖2F + 2〈Z,T ⋆ − T k−1〉
− 2µk〈A (Z),y − A (T k−1)〉

= Jk(T
⋆) + ‖Z‖2F + 2〈Z,T ⋆ − T k−1〉+ 2µk〈Z ,Gk−1〉

= Jk(T
⋆) + ‖Z‖2F ,

where the last equality follows directly from (5). Hence, as

Z = T − T ⋆, we have the equivalence

argmin
T ∈S

Jk(T ) = argmin
T ∈S

‖T − T ⋆‖2F = ΠS(T
⋆).

Since Lr is closed and nonempty, we have from Proposi-

tion 3.1 that, if there is some µk such that Jk(T ) majorizes

µkJ(T ) and for which there exists T k ∈ ΠLr
(T k−1 +

µkGk−1) satisfying T k 6= T k−1, then J(T k) < J(T k−1).
It turns out, however, that the requirement of having a Jk(T )
that majorizes µkJ(T ) for all T can be relaxed to improve

convergence speed, as discussed in the next section.

It should be noted that it is hard to ensure in practice that

T k is indeed a minimum of Jk over Lr, because projecting

onto Lr is not an easy task. To avoid an excessive compu-

tational cost per iteration, TIHT employs the quasi-optimal

projection Hr, and thus T k is only close to a minimum. Nev-

ertheless, as observed by [13], practical experience suggests

that this suboptimality does not preclude TIHT from converg-

ing. Yet, a more rigorous analysis taking it into account re-

mains as a topic for future investigation.

Remark 3.2. Interestingly, Proposition 3.1 is quite general,

being valid for any closed nonempty subset S. Thus, the

above reasoning clearly holds for other formulations as, e.g.,

one based on the rank definition which applies to the tensor

train model (see [8] and references therein). More generally,

it can be extended to any problem of the form (1) in a finite-

dimensional Hilbert space, as long as the feasible set is closed

and nonempty.

4. IMPROVED STEP SELECTION STRATEGY

In spite of the successful recovery results shown in [13], the

suitability of the step size formula (3) for achieving actual

decrease of J is not discussed. This formula provides the

optimal gradient descent step for unconstrained minimization

(i.e., over U ). However, when minimizing over Lr with the

scheme (2), its optimality is lost. Equally importantly from a

practical standpoint, the behavior of the resulting algorithm is

not satisfactory, because it converges quite slowly.

In the previous section, we have used the inequality

µkJ(T k) < Jk(T k) to derive J(T k) < J(T k−1). Thus, it

suffices to guarantee that this inequality holds at T k, instead

of requiring that Jk(T ) majorizes µkJ(T ) at all T . To this

end, one can check whether µk satisfies

µk < ω(µk) =
‖T k − T k−1‖2F

‖A (T k − T k−1) ‖22
, (6)

because such inequality, together with (4), impliesµkJ(T k) <
Jk(T k). Note that the notation ω(µk) emphasizes that the

bound for µk depends on µk itself.

The condition (6) is an extension of that proposed in [14]

for NIHT, which ensures cost function decrease when an op-

timal step cannot be computed with a simple formula. In that

situation, NIHT only accepts a candidate step size if it satis-

fies a condition analogous to (6); otherwise, it is reduced until

that condition is fulfilled. In the case of TIHT, (6) was not

violated by step sizes computed with (3) during our practical

experiments. However, (3) often yields µk ≪ ω(µk), while

empirical evidence suggests that the optimal step lies usually

closer to its bound. This slows down the convergence of the

algorithm. Note that, since any µk satisfying µk < ‖A ‖−2 is

majorized by (3), this observation also justifies the use of the

more relaxed condition (6).

To circumvent this problem, we propose a modified algo-

rithm, named improved-step-selection TIHT (ISS-TIHT), in

which a heuristic step selection routine is added. The idea be-

hind this routine is simple: given a fixed α such that 0 ≪ α <
1, one checks whether the candidate µk satisfies

αω(µk) ≤ µk < ω(µk), (7)

keeping its associated estimate T k when it does. Otherwise,

we simply set µk = βω(µk) for some β ∈ (α, 1), compute a

new T k and repeat the process. We employ (3) as the starting

candidate µk, which is reasonable since it satisfies (7) at some

iterations. As there is no guarantee of finding a step fulfilling

(7) with this procedure, we establish a maximum number of

trials L, after which we keep the biggest generated step size

satisfying the upper bound of (7). If none of them does, we

take the smallest candidate step and proceed as in the NIHT

[14], reducing it via division by a factor κ > 1 until the upper

bound is verified. A pseudocode describing this scheme is

shown in Algorithm 1, where we denote the candidate values

of µk and T k by µk,l and T k,l, respectively, for l = 1, . . . , L.
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Algorithm 1 ISS-TIHT

1: for k = 1, 2, . . . ,K do

2: Gk−1 = −A ∗(y − A (T k−1))
3: µk,1 = ‖Gk−1‖2F ‖A (Gk−1)‖−2

2

4: for l = 1, . . . , L do

5: T k,l = Hr(T k−1 − µk,lGk−1)
6: if αω(µk,l) ≤ µk,l ≤ ω(µk,l) then

7: select µk = µk,l , T k = T k,l

8: break

9: end if

10: µk,l+1 = βω(µk,l)
11: end for

12: if no µk,l was selected then

13: if ∃ l such that µk,l < ωk(µk,l) then

14: l⋆ = argmaxl µk,l subject to µk,l < ωk(µk)
15: else

16: l⋆ = argminl µk,l

17: while µk,l⋆ ≥ ω(µk,l⋆) do

18: µk,l⋆ = µk,l⋆/κ
19: end while

20: end if

21: select µk = µk,l⋆ , T k = T k,l⋆

22: end if

23: end for

We point out that the idea of choosing a new candidate

for the step size as βω(µk) is suggested in [14] with β = 1,

but only in the case that the current candidate violates the

upper bound ω(µk). In other words, a candidate step size is

never increased in NIHT; rather, it is only shrunk if the upper

bound ω(µk) is not met. In the case of TIHT, enforcing also

the lower bound of (7) substantially accelerates convergence.

5. SIMULATION RESULTS

We now evaluate ISS-TIHT in two simulation scenarios.

First, a LRTR setting with an unconstrained operator and

a synthetic data tensor is considered. To this end, we ran-

domly generate A and T ∈ R
N×N×N and apply four algo-

rithms to recover T from y = A (T ) = A vec(T ), where

A ∈ R
M×N3

, with M = ρN3. The data tensor is given by

T = T 0+10−5N , where T 0 is a low-rank tensor generated

via T 0 = S ×1 V
(1) ×2 V

(2) ×3 V
(3), with S ∈ R

R×R×R

and V(p) ∈ R
N×R. All A, N , S and V(p) have standard

Gaussian i.i.d. elements, and we normalize T 0 and N so

that ‖T 0‖F = ‖N‖F = 1. The evaluated algorithms are

TIHT, ISS-TIHT, an alternating direction method of multipli-

ers (ADMM) scheme based on that of [10, Sec. 4.4], which

minimizes a weighted sum of NNs of matrix unfoldings, and a

generalized alternating least-squares (GALS) scheme, which

estimates the components of a low-m-rank Tucker model of

T by minimizing J with respect to them in an alternating

fashion. We empirically set the regularization and penalty
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Fig. 1. Average NMSE measured in a LRTR setting with un-

constrained operator (scenario 1).

Algorithm Scenario 1 (LRTR) Scenario 2 (TC)

TIHT 1.78 ×10−2 1.65×10−1

ISS-TIHT 2.86 ×10
−2

3.41×10
−1

GALS 4.13 ×10
−1 —

ADMM (M ) 2.61 ×10−1 3.96×100

ADMM (2M ) 6.67 ×10−1 —

ADMM (3M ) 1.28 ×100 —

Table 1. Average time measured per iteration (in seconds).

parameters of ADMM respectively as λ = 10−2 and η = 2,

aiming at maximizing estimation precision, and use weights

γ1 = γ2 = γ3 = 1/3. Regarding ISS-TIHT, we use α = 0.5,

β = 0.7, κ = 1.2 and L = 5. We fix R = 5, N = 20,

ρ = 0.15 and let all the algorithms run for K = 60 iterations,

measuring at each iteration k the normalized square error

NSEk = ‖T − T k‖2F/‖T ‖2F . TIHT, ISS-TIHT and GALS

are run with R1 = R2 = R3 = R. This procedure is repeated

for 30 joint realizations of A, T 0 and N , and the average

NSEk is computed for each k and each algorithm, yielding

the corresponding normalized mean-square error NMSEk

displayed in Fig. 1. For reference, we plot also the NMSE

of the (R,R,R)-truncated HOSVD of T . Table 1 reports

the average computing time per iteration measured in a Intel

Xeon ES-2630v2 2.60 GHz. The results show that ISS-TIHT

converges much faster than TIHT. GALS converges even

faster, but at the expense of a much higher computational

cost. Since ADMM performs poorly with M measurements,

we also evaluate it using the same procedure but with A pro-

viding 2M and 3M measurements. As the curves show, only

with 3M measurements ADMM attains low error (at a quite

high cost), but is still outperformed by ISS-TIHT and GALS.

In the second scenario, we consider a TC setting. The

data tensor T ∈ R
128×128×128 now contains the brain MRI

data used in [17]. The evaluated algorithms are the ADMM

scheme of [10, Sec. 4.4], TIHT and ISS-TIHT. GALS and

the approach of [17] are not included since the first is too

costly for this setting, while the latter does not apply to TC.

The ADMM algorithm is employed with the observations as

constraints (λ → 0), as proposed in [10] for the noiseless
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Fig. 2. Average NMSE measured in a TC setting (scenario 2).

case. We set (again, empirically) η = 0.04, and choose γ1 =
γ2 = γ3 = 1/3. For ISS-TIHT, we use α = 0.5, β = 0.7,

κ = 1.2 and L = 5. TIHT and ISS-TIHT are run with

R1 = R2 = R3 = R = 20. To generate A and y, we

randomly choose a subset of the indices of T of cardinality

M = ρ1283, with ρ = 0.15, filling y with the correspond-

ing elements. This process was repeated for 30 realizations

of A. The results are shown in Table 1 and Fig. 2. Again,

we plot the NSE of the (R,R,R)-truncated HOSVD of T ,

which is an approximate lower bound for the NMSEk of both

TIHT and ISS-TIHT. One can see that, thanks to the intro-

duced step selection heuristic, ISS-TIHT outperforms both

TIHT and ADMM.

Finally, we point out that, in all our experiments, ISS-

TIHT always found at least a candidate step size satisfying

the upper bound of (7). Also, the behavior of the algorithm

was not observed to be too sensitive to the choice of α and β.

6. CONCLUSION

We have studied the TIHT algorithm by relying on the opti-

mization strategy which underlies the NIHT algorithm. This

offers an insightful interpretation of its iterates, whose cost

function values are monotonically decreasing under a certain

upper bound on the step size, assuming the best low-rank ap-

proximation calculated at each iteration is exact. Then, we

have proposed the ISS-TIHT algorithm, which includes a sub-

routine that attempts to find a step within a constant factor of

its bound. Our simulation results show that this simple heuris-

tic leads to a remarkable acceleration of convergence.
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