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ABSTRACT
This paper deals with the problem of detecting cyber-
physical attacks on Supervisory Control And Data Acquisi-
tion (SCADA) systems. The discrete-time state space model
is used to describe the systems. The attacks are modeled
as additive signals of short duration on both state evolution
and sensor measurement equations. The steady-state Kalman
filter is employed to generate the sequence of innovations.
Next, these independent random variables are used as en-
tries of the Variable Threshold Window Limited CUmulative
SUM (VTWL CUSUM) test. It has been shown that the opti-
mal choice of thresholds with respect to (w.r.t.) the transient
change detection criterion leads to the Finite Moving Average
(FMA) test. The main contribution of this paper is a sensi-
tivity analysis of the FMA test. This analysis is based on a
numerical calculation of the probabilities of wrong decision
under the variation of operational parameters. Theoretical re-
sults are applied to the detection of an attack scenario on a
SCADA water network.

Index Terms— Transient change detection, Window
Limited CUSUM test, FMA test, cyber-physical attacks,
SCADA systems.

1. INTRODUCTION

The SCADA systems have been playing a vital role in var-
ious safety-critical infrastructures, including electric power
grids, gas pipelines and water networks [1]. Modern SCADA
systems become more and more vulnerable to cyber-physical
attacks, not only on the physical infrastructures but also on
the communication network and the control center. The Ma-
roochy water breach [2], the pump burnout [3] or the Stuxnet
virus [4] are some examples of recent cyber incidents target-
ing SCADA systems.

Three approaches have been considered for studying the
security of SCADA systems against cyber-physical attacks:
information technology (IT) approach, secure control ap-
proach and fault detection and isolation (FDI) approach. The
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IT approach is concerned with the authentication, access con-
trol or message integrity. In contrast, the secure control meth-
ods focus mainly on investigating the vulnerabilities of net-
worked control systems for designing stealthy attacks which
can partially or completely bypass traditional anomaly detec-
tors [5, 6]. The FDI approach, on the other hand, exploits
the analytical redundancy of the systems to detect the attacks
[7,8]. For example, the security of water canals against cyber
attacks has been considered in [9], where a bank of unknown
input observers is designed to detect and isolate the attacks.
A comprehensive framework has been introduced in [10] to
study the attack detection and identification problem.

Previously, cyber-physical attacks are considered as an ac-
tion of infinite duration. In some practical situations, how-
ever, the adversary may prefer to perform his malicious at-
tack within a short period due to limited resources. More-
over, for safety-critical applications, it is required to detect
the attacks with the detection delay upper bounded by a pre-
scribed value. For these reasons, we formulate the detection
of attacks as the problem of detecting transient changes in
stochastic-dynamical systems [11].

The sequential detection of transient signals in the inde-
pendent Gaussian observations has been treated in [12, 13].
The optimality criterion involves the minimization of the
worst-case probability of missed detection for a given value
on the worst-case probability of false alarm within any time
window of predefined length. A sub-optimal algorithm w.r.t.
this criterion has been introduced. Pursuing the work started
in [12, 13], the authors have considered the detection of tran-
sient changes in the discrete-time state space model (see [11]).
The main idea is as follows. The steady-state Kalman filter
is used to generate the sequence of innovations. These in-
novations are used as entries of the Variable Threshold Win-
dow Limited CUmulative SUM (VTWL CUSUM) test, which
has been introduced in [12, 13], to detect the transient sig-
nals. Finally, the thresholds are chosen to optimize the VTWL
CUSUM test w.r.t. the criterion defined in [12,13]. It has been
shown that the optimal choice of variable thresholds w.r.t. the
transient change detection criterion leads to the Finite Moving
Average (FMA) test (see, [11–13] for more details).

The originality of this paper w.r.t. to previous works con-
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sists in proposing a numerical method for estimating the error
probabilities of the FMA test and investigating the sensitivity
of the FMA test w.r.t. operational parameters, including the
attack duration, the attack profiles, and the noise covariance
matrices. The paper is organized as follows. The problem
statement is given in section 2. The Kalman filter-based de-
tection algorithms are designed in section 3. In section 4, a
numerical method of the error probabilities calculation is in-
troduced to study the sensibility of the FMA test. Examples
of SCADA system are given in section 5. Some concluding
remarks and perspectives are drawn in section 6.

2. SYSTEM AND ATTACK MODELS WITH
OPTIMALITY CRITERION

The following discrete-time state space model is employed in
this paper to describe an industrial SCADA system:{

xk+1 = Axk +Buk + Fdk +Baak + wk

yk = Cxk +Duk +Gdk +Daak + vk
, (1)

where xk ∈ Rn is the vector of system states, uk ∈ Rm is
the vector of control signals, dk ∈ Rq is the vector of distur-
bances, yk ∈ Rp is the vector of measurements, ak ∈ Rs is
the vector of attack signals, wk ∈ Rn is the vector of pro-
cess noises and vk ∈ Rp is the vector of sensor noises; the
matrices A ∈ Rn×n, B ∈ Rn×m, F ∈ Rn×q , C ∈ Rp×n,
D ∈ Rp×m, G ∈ Rp×q , Ba ∈ Rn×s and Da ∈ Rp×s are as-
sumed to be known. For the sake of simplicity, the control sig-
nals uk and the disturbances dk are assumed to be completely
known. The process noises wk ∼ N (0, Q) and the sensor
noises vk ∼ N (0, R) are assumed to be independent identi-
cally distributed (i.i.d.) zero-mean Gaussian random vectors
with known covariance matrices Q and R. It is assumed also
that the initial states x0 ∼ N (x0, P0), where x0 and P0 are
known.

Suppose that the attacker performs his malicious action
during a short period τa = [k0, k0 + L− 1], where k0 is the
unknown attack instant and L is the known attack duration.
Then, the attack vector ak is modeled as

ak =


0 if k < k0

θk−k0+1 if k0 ≤ k < k0 + L

0 if k ≥ k0 + L

, (2)

where θ1, θ2, · · · , θL ∈ Rs are known attack profiles.
With the target of detecting transient changes in

stochastic-dynamical systems, we use through this paper the
optimality criterion introduced in [12, 13], involving the min-
imization of the following worst-case probability of missed
detection:

inf
T∈Cα

{
Pmd (T ;L)= sup

k0≥L
Pk0(T−k0+1>L|T ≥k0)

}
, (3)

among all stopping times T ∈ Cα satisfying the worst-case
probability of false alarm within any time window of pre-
defined length mα :

Cα=

{
T :Pfa (T ;mα)=sup

l≥L
P0 {l≤T <l+mα}≤α

}
. (4)

3. TRANSIENT CHANGE DETECTION
ALGORITHMS

In this section, we design the VTWL CUSUM test and the
FMA test based on the sequence of innovations generated by
the steady-state Kalman filter with known parameters.

3.1. Model of transient changes in Kalman filter innova-
tions

Seeking for simplicity, suppose that the steady-state Kalman
filter is employed to generate the sequence of innovations.
The steady-state Kalman gain K∞ is calculated as

K∞ = P∞C
T
(
CP∞C

T +R
)−1

, (5)

where P∞ covariance matrix can be found by solving the fol-
lowing discrete-time algebraic Riccati equation:

P∞ = AP∞A
T−AP∞CT

(
CP∞C

T +R
)−1

CP∞A
T+Q.

(6)
As it follows from [7, 11], the innovations {rk}k≥1 are in-
dependent Gaussian vectors with zero-mean under normal
operation and with transient profiles φ1, · · · , φL ∈ Rp un-
der the transient change. Let ξ1, ξ2, · · · ∈ Rp be zero-
mean i.i.d. Gaussian vectors satisfying ξk ∼ N (0, J) where
J = CP∞C

T +R. The model of the innovations is described
by

rk =


ξk if k < k0

φk−k0+1 + ξk if k0 ≤ k < k0 + L

φ̃k + ξk if k ≥ k0 + L

, (7)

where the transient profiles φ1, · · · , φL ∈ Rp are calculated
from the attack profiles θ1, · · · , θL (see [11]), and the latent
profiles φ̃k, i.e. for k ≥ k0 + L, are of no interest.

Let Pk0 (resp. P0 , P∞) and Ek0 (resp. E0 ,
E∞) denote, respectively, the probability measures and
the expectations when the innovations r1, r2, · · · follow
the model (7). Let rkk−L+1 =

[
rTk−L+1, · · · , rTk

]T ∈
RLp be the concatenated vector of innovations, ξkk−L+1 =[
ξTk−L+1, · · · , ξTk

]T ∈ RLp be the concatenated vector of
random noises and φkk−L+1 (k0) ∈ RLp be the concatenated
vector of transient profiles, depending on the relative position
between the change-point k0 and the window [k − L+ 1, k]
by the following relation:
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φkk−L+1 (k0) =



[0]0 if k < k0
[0]1
φ1
...

φk−k0+1

 if k0 ≤ k < k0 + L

φ̃kk−L+1 if k ≥ k0 + L

,

(8)
where [0]0 is the null vector of size Lp, [0]1 is the null vec-
tor of size [L − (k + k0 + 1)]p and the post-change profiles
φ̃kk−L+1 ∈ RLp are of no interest. From (7) and (9), the sta-
tistical model of rkk−L+1 is described as

rkk−L+1 ∼ N
(
φkk−L+1 (k0) ,Σ

)
, (9)

where Σ = diag (J) ∈ RLp×Lp is a block-diagonal matrix
formed of blocks J .

3.2. VTWL CUSUM algorithm and FMA detection rule

The stopping time TV TWL of the VTWL CUSUM test, which
was introduced in [11, 13], is defined as

TVTWL =inf

{
k ≥ L : max

k−L+1≤i≤k

(
Ski −hk−i+1

)
≥0

}
, (10)

where h1, · · · , hL are chosen thresholds and Ski is the log-
likelihood ratio (LLR) between Pi and P0, it is computed as

Ski =
[
φkk−L+1 (i)

]T [
Σ−1

][
rkk−L+1−

1

2
φkk−L+1 (i)

]
. (11)

The VTWL CUSUM algorithm (10)–(11) proceeds as fol-
lows. For each time index i from k − L + 1 to k, the LLR
Ski is calculated by (11). The LLR Ski is compared to each
threshold hk−i+1 and the alarm time TVTWL is raised if one of
the LLRs is greater than or equal to its corresponding thresh-
old. The thresholds h1, · · · , hL are considered as the tuning
parameters for optimizing the VTWL CUSUM algorithm.

The optimal choice of thresholds w.r.t. the criterion (3)–
(4) has been considered in [11, 13]. It has been shown that
the optimized VTWL CUSUM test (10)–(11) results in the
following FMA test:

TFMA (hL) = inf
{
k ≥ L : Skk−L+1 ≥ hL

}
, (12)

where the threshold hL is chosen for assuring an acceptable
level of false alarms.

4. CALCULATION OF WRONG DECISION
PROBABILITIES

In this section, we propose a numerical method for calculat-
ing the probabilities Pmd(TFMA;L) and Pfa (TFMA;mα) for the

FMA test given (12). This method can be used to study the
sensitivity of the FMA test w.r.t. the operational parameters:
attack duration L, attack profiles θ1, · · · , θL, noise covari-
ances Q and R, respectively.

4.1. Formulas for error probabilities

From [12,13], we obtain the formulas for the worst-case prob-
ability of false alarm Pfa and the worst-case probability of
missed detection Pmd of the FMA test defined in (12) as

Pfa (mα, hL) = 1−P0

(
L+mα−1⋂
k=L

{
Skk−L+1 < hL

})
, (13)

Pmd (L, hL)= sup
k0≥L

Pk0

(
k0+L−1⋂
k=L

{
Skk−L+1 < hL

})

Pk0

(
k0−1⋂
k=L

{
Skk−L+1 < hL

}) . (14)

The computation of Pfa and Pmd is based on the numerical
method for calculating the cumulative distribution function
(c.d.f.) of the multivariate normal distribution, which was
proposed in [14].

4.2. Calculation of expectations and covariances

Let L be the true attack duration, θ1, · · · , θL be the true at-
tack profiles, Q and R be the true covariances of process and
sensor noises, respectively. Because the system is linear and
the noises are Gaussian, to get (13) and (14) it is sufficient to
calculate the expectations E0

[
Skk−L+1

]
, Ek0

[
Skk−L+1

]
and

the covariance σ12 = cov
(
Sk1i1 , S

k2
i2

)
when the true values

of operational parameters (i.e. L, θ1, · · · , θL, Q and R) are
different from their putative values (i.e. L, θ1, · · · , θL, Q and
R).

Under the pre-change probability measure P0, it follows
from (8)–(9) that E0

[
rkk−L+1

]
= 0, leading to

E0

[
Skk−L+1

]
= −1

2

[
φL1 (1)

]T [
Σ−1

] [
φL1 (1)

]
. (15)

Under the probability measure Pk0 , we have Ek0
[
rkk−L+1

]
=

φ
k

k−L+1 (k0), where the concatenated vector of true tran-

sient profiles φ
k

k−L+1 (k0) is formulated in the same man-
ner as φkk−L+1 (k0) in (8), with the putative transient profiles
φ1, · · · , φL replaced by the true transient profiles φ1, · · · , φL
which depend only on true values of L and θ1, · · · , θL, re-
sulting in

Ek0
[
Skk−L+1

]
=
[
φL1 (1)

]T [
Σ−1

][
φ
k

k−L+1 (k0)− 1

2
φL1 (1)

]
.

(16)
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The covariance σ12 between Sk1i1 and Sk2i2 is calculated by

σ12 =
[
φk1k1−L+1 (i1)

]T [
Σ−1

][
Σ12

][
Σ−1

][
φk2k2−L+1 (i2)

]
,

where

Σ12 = E0


 rk1−L+1

...
rk1

( rTk2−L+1 · · · rTk2
) .

In such situations that Q 6= Q and/or R 6= R, the Kalman
filter is no longer optimal and the innovations are no longer
independent. Hence, it is required to calculate E0

[
rt1r

T
t2

]
,

for k1 − L + 1 ≤ t1 ≤ k1 and k2 − L + 1 ≤ t2 ≤ k2. The
calculation of E0

[
rkr

T
k+l

]
, for l ≥ 0, is given in Algorithm 1.

Algorithm 1 Calculation of the covariance E0

[
rkr

T
k+l

]
.

1. Initialization: P 0|−1 = P∞ and K = AK∞, where K∞
and P∞ are given in (5)–(6).

2. Calculation of the true covariance P k+1|k:

P k+1|k = (A−KC)P k|k−1 (A−KC)
T

+Q+KRKT .

3. If (l = 0) then

E0

[
rkr

T
k

]
= CP k|k−1C

T +R,

4. Else if (l ≥ 1) then

E0

[
rk+lr

T
k

]
= CEk+l,

where Ek+l is computed recursively as

Ek+l+1 = (A−KC)Ek+l,

with initial value (i.e. l = 1)

Ek+1 = AP k|k−1C
T −K

(
CP k|k−1C

T +R
)
.

5. APPLICATION AND NUMERICAL EXAMPLES

In this section, the proposed algorithms are applied to detect
an attack scenario on a simple SCADA water network.

5.1. SCADA water distribution network

Consider a simple SCADA water network as shown in Fig. 1.
The water network consists of two treatment plants W1 and
W2, two reservoirs R1 and R2, a tank T3, two pumps P1

and P2, two consumers d1 and d2, and several nodes and
pipelines. Four pressure sensors S1, S2, S3 and S4 are
equipped for measuring pressures at the reservoir R1, at the
reservoir R2, at the tank T3 and at the node N4, respectively.

Fig. 1: The simple SCADA water distribution network.

The linearized model of the water network can be de-
scribed in the discrete-time state space model (1), where
xk = [h1, h2, h3]

T ∈ R3 is vector of system states; uk ∈ R2

are the control signals sent to local controllers for regulat-
ing the flow rates Q01 and Q02 through the pump P1 and P2,
respectively; dk ∈ R2 are the consummation of customers;
yk ∈ R4 are the measurements of four sensors S1, S2, S3

and S4; the process noises wk ∼ N (0, Q) and the sensor
noises vk ∼ N (0, R); the matrices A ∈ R3×3, B ∈ R3×2,
F ∈ R3×2, C ∈ R4×3, D ∈ R4×2, G ∈ R4×2, Q ∈ R3×3,
and R ∈ R4×4 (i.e. n = 3, m = 2, p = 4, q = 2).

For the demonstration purpose, let us consider an attack
scenario where the attacker performs a coordinated attack by
stealing water from the reservoir R1, turning off the pump P1

and compromising the measurements of sensors S3 and S4

during the attack period τa = [k0, k0 + L− 1], where k0 is
the unknown attack instant and L is the known attack dura-
tion. This attack scenario is motivated by a true attack on city
water utility, as reported in [3]. The attack vector ak ∈ R8 is
designed by the attacker and by the covert attack strategy [6]
which define matrices Ba ∈ R3×8 and Da ∈ R4×8 (i.e.
s = 8). The simulation parameters are omitted due to the
paper limit.

5.2. Numerical examples

10
−3

10
−2

10
−1

10
−3

10
−2

10
−1

10
0

Fig. 2: Comparison between FMA test and classical tests.
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Fig. 2 shows the comparison between the FMA test and
three other competitors by using criterion (3) – (4). For a
given value on the worst-case probability of false alarm, the
worst-case probability of missed detection of the FMA test is
smaller than that of the χ2 test [5], the conventional CUSUM
test and the WL CUSUM test given by (10) with the constant
thresholds h1 = · · · = hL.

The sensitivity of the FMA test w.r.t. operational param-
eters is shown in Fig. 3. It can be noticed that the numerical
curves coincide perfectly with the Monte Carlo curves, thus
validating the proposed numerical method.

5 6 7 8 9 10 11

10
−2

10
−1

(a) Attack duration L.

0.9 0.95 1 1.05 1.1
10
−3

10
−2

10
−1

(b) Attack profiles θ1, · · · , θL.

0.8 0.9 1 1.1 1.2
10
−3

10
−2

(c) Process noise covariance Q.

0.8 0.9 1 1.1 1.2
10
−3

10
−2

(d) Sensor noise covariance R.

Fig. 3: Robustness of FMA test w.r.t. operational parameters:
comparison between Monte Carlo and numerical method.

It is clear that the probability of false alarm Pfa is insensi-
tive to both attack duration L and attack profiles θ1, · · · , θL.
In contrast, the probability of missed detection Pmd depends
heavily on these parameters. The larger the attack profiles,
the smaller the probability of missed detection, as shown in
Fig. 3b. The attack duration, on the other hand, impacts the
probability of missed detection in a different way (see Fig 3a).
For L ∈ {5, 6, 7, 8} ≤ L = 8, the probability of missed
detection Pmd is a decreasing function of the true attack du-
ration L. However, the value of Pmd remains constant for
L ∈ {8, 9, 10, 11} ≥ L since any detection of attack with the
delay greater than L is considered as missed.

The sensitivity of the FMA test w.r.t. the variances of ran-
dom noises is presented in Fig. 3c and Fig. 3d, respectively.
It can be concluded that Pfa and Pmd are increasing functions
of the multiplicative coefficient α, such that Q = αQ and
R = αR.

6. CONCLUSION

This paper has proposed a numerical method for estimating
the probabilities of wrong decisions of the FMA test. This

method is used to analyze the robustness of the FMA test
w.r.t. some operational parameters, including the attack dura-
tion, the attack profiles, the process and sensor noise covari-
ance matrices. This sensibility analysis is essential in evalu-
ating the performances of the detection algorithm under the
variation of the operational parameters.
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[12] Blaise Kévin Guépié, Lionel Fillatre, and Igor Nikiforov, “Se-
quential detection of transient changes,” Sequential Analysis,
vol. 31, no. 4, pp. 528–547, 2012.
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