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ABSTRACT
In this paper, a novel single image super-resolution (SISR)
algorithm is proposed. It is based on the BM3D (Block-
Matching and 3D filtering) paradigm, where both sparsity and
nonlocal patch self-similarity priors are utilized. The algo-
rithm is derived from a variational formulation of the prob-
lem and has a structure typical for iterative back-projection
super-resolution methods. They are characterized by updating
high-resolution image which is calculated using the previous
estimate and upsampled low-resolution error. The developed
method is thoroughly compared with the state-of-the-art SISR
both for noiseless and noisy data, demonstrating superior per-
formance objectively and subjectively.

Index Terms— Single image super-resolution, sparse
non-local imaging, image upsampling, image resizing

1. INTRODUCTION

Single image super-resolution (SISR) aims at constructing
a high-resolution (HR) image from a single input low-
resolution (LR) image. It is also known as an image in-
terpolation or resizing. Classical interpolation methods, such
as bilinear or bicubic, possess efficient implementation but
resulting images suffer from visible over-smoothing. Iterative
back-projection (IBP) methods [1], in opposite, may produce
images with over-sharpened edges. Many image interpolation
methods use IBP at their post-processing (edge sharpening)
stage [2].

Super-resolution is an ill-posed problem and a regulariza-
tion in the solution space is applied to it. This makes finding a
good model of a prior of the target HR image to be extremely
important. Various image priors have been used including
global and local ones. Some global priors, like soft-edge and
TV [3], [4] may result in images with overshooted edges. A
sparsity prior has been applied in [2], [5], where coefficients
of sparse representation of LR image patch have been used to
produce the corresponding HR image patch.

Some recent SISR methods, including anchored neighbor-
hood regression [6], [7] and deep-learning methods [8] based
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on principles of neighbor embedding and sparse coding, pro-
duce the state-of-the-art results. These learning-based meth-
ods are external, i.e. they use an external database of images
to train the dictionary. Internal methods based on image self-
similarity across the scales have been proposed in [9], [10].

In this paper, the problem of SISR is studied without any
external dictionary. The proposed method, called SR-BM3D,
is derived from the variational setting using a combination of
self-semilarity, non-locality and sparsity priors coming from
BM3D modeling [12]. It has a structural similarity to the
back-projection (e.g. [1], [3], [11]) with two main differences:
(1) filtering at each iteration is applied to HR images instead
of filtering upsampled low-resolution errors (differences), and
(2) the BM3D, image adaptive and very efficient denoising is
applied for this filtering.

The paper is structured as follows. In Section 2, the pro-
posed SR-BM3D algorithm is derived. Experimental results
are given in Section 3 for noiseless and noisy data followed
by the conclusion in Section 4.

2. SR-BM3D: ALGORITHM DERIVATION

2.1. Image formation and sparsity

Let the link between low- and high-resolution images be
given in the form

xL = DsxH , (1)

where xL 2 Rm, xH 2 Rn, n > m, and the matrix Ds 2
Rm£n encodes blurring and downsampling transformations.

The scaling factor is defined as s = n=m > 1. The goal
of SISR is to reconstruct the high-resolution xH from the low-
resolution observation xL provided given Ds. Recently, this
problem appears in compressed sensing scenarios often in-
cluding sparse modeling for xH [15].

The equation (1) formalizes the problem at hand. Even
if the focussing is precise and the optics - ideal, the down-
sampling formalized by the transform matrix Ds in practice
never can be treated as a trivial subsampling. In particular, in
a proper mathematical modeling, the downsampling assumes
a continuous domain approximation of an image given on a
high resolution grid and anti-aliasing filtering. Then, the ma-
trix Ds is defined by the location of low and high resolution
pixels, by the scale s, and by the applied interpolation method.
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Since the matrix Ds has far fewer rows than columns,
SISR is an ill-posed inverse problem with an infinite num-
ber of solutions satisfying (1). Introducing an image prior is a
standard way to overcome these uncertainness and to achieve
an acceptable image quality.

In this paper, the sparsity of high-resolution image is used
as a prior. We assume that xH2 Rn admits a sparse repre-
sentation, or sparse coding, with respect to columns of a ma-
trix ª 2 Rn£N ; i.e. it is possible to write xH= ªµ, where
µ 2 RN is a vector containing only few non-zero components
for a good approximation of xH . The matrix ª is termed as
a synthesis operator (or dictionary). This synthesis represen-
tation for xH has a dual point of view in which, given an im-
age xH2 Rn, its spectrum µ 2 RN is computed by applying
the so-called analysis operator (or dictionary) © 2 RN£n to
xH , i.e. µ = ©xH . The requirement of the perfect analysis-
synthesis reconstruction means that ª© = In, where In is
the n£n identity matrix. It happens, that when we are look-
ing for sparsest approximations, the likelihood of success in-
creases for overcomplete transforms with N À n. The con-
cept of a frame is an important generalization of the classical
bases especially developed for overcomplete (synthesis and
analysis) representations with linearly dependent approximat-
ing functions. The success of the sparse imaging strongly de-
pends on how rich and redundant are the analysis and synthe-
sis dictionaries. For sparse modeling of xH the analysis and
synthesis BM3D frames developed in [13] are used. These
frames belong to the class of the ’internal’ transforms (dictio-
naries) extracted from the given observations. The efficiency
of these transforms for image sparse modeling is confirmed
by successive use of the BM3D filters.

2.2. Optimization

A sparse reconstruction of xH can be formulated as the fol-
lowing optimization problem:

min
µ2RN

J , J =
1

2
jjxL ¡ DsxH jj22 + ¿µjjµjj0, (2)

xH = ªµ,

where the first summand in J is the Euclidean norm of the
residuals (1); the second summand is a regularization term
(penalization) enabling the sparsity of xH . Recall that l0-
pseudo norm, jjµjj0, is calculated as a number of nonzero el-
ements of µ. Thus, smaller jjµjj0 corresponds to a sparser
representation for xH . While the straightforward minimiza-
tion (2) is possible, our approach is essentially different. Fol-
lowing [13], we apply the multiple-criteria Nash equilibrium
technique [14]. In this approach both the synthesis ª and
analysis © transforms are exploited, contrary to (2) where the
synthesis transform is used only.

Let us introduce the following three criteria:

J1(µ;xH ) =
1

2
jjµ ¡ ©xH jj22 + ¿µjjµjj0 (3)

J2(x̂L; µ) =
1

2
jjxL ¡ x̂Ljj22 +

1

2°1

jjx̂L ¡ Ds(ªµ)jj22;

J3(xH ; x̂L) =
1

2
jjx̂L ¡ DsxH jj22 +

1

2°2

jjxH jj22:

The criterion J1 enables the sparsity of the spectrum µ
for xH . The x̂L is an auxiliary splitting variable making the
multi-criteria approach much more manageable in compari-
son with the single criterion approach based on (2). While
xL is a given low-resolution observation, x̂L is an estimate
of xL. In J2 we have two quadratic summands calculated as
the Euclidean norm of the error between xL and x̂L and be-
tween x̂L and the prediction for xL obtained from the high-
resolution spectrum µ using the synthesis transform ª and
downsampling Ds. J3 formalizes the upsampling of xL to
xH as an inverse problem with the quadratic regularization.
The Nash equilibrium for (3) is a consensus of restrictions
imposed by J1, J2, J3 defined as a fixed point (µ¤,x¤

L, x¤
H)

such that:

µ¤ = arg min
µ

J1(µ;x
¤
H), x̂¤

L = min
x̂L

J2(x̂L; µ
¤), (4)

x¤
H = min

xH
J3(xH ; x̂

¤
L).

If the equilibrium (µ¤,x̂¤
L, x¤

H ) exists, any deviation from it
results in increasing of at least one of the criteria. If l0-pseudo
norm in J1 is replaced by l1-norm, calculated as the sum of
the absolute values of the vector, then all the criteria in (3) are
convex and the fixed point (4) exists under quite mild con-
strains. While this sort of results are unknown for l0; the ex-
periments show that the algorithm based on l0 pseudo-norm
performs better than that for l1-norm.

The iterative algorithm looking for the fixed point has the
following conventional iterative form [14]:

µk = arg min
µ

J1(µ;x
k
H ), x̂k+1

L = min
x̂L

J2(x̂L; µ
k),(5)

xk+1
H = min

xH
J3(xH ; x̂

k+1
L ), k = 0; 1; :::. (6)

The solution of the first problem in (5) is the hard thresh-
olding with the threshold equal to

p
2¿µ :

µk = Thp
2¿µ(©xkH ). (7)

The solution of the second quadratic problem in (5) is of
the form:

x̂k+1
L = (xL +

1

°1

Ds(ªµk))=(1 + 1=°1). (8)

The solution of the third problem (5) defines the upsam-
pling as the regularized inverse operator:

xk+1
H = (DT

s Ds + IN=°2)
¡1DT

s x̂k+1
L : (9)
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Straightforward manipulations allow to rewrite (8) in the
form

x̂k+1
L = ~xkL + ¯(xL ¡ ~xkL); ~xkL = Dsx

k
H , (10)

where xkH = ªµk is a high-resolution image after BM3D
filtering and ¯ = °1=(1 + °1); 0 < ¯ < 1.

Inserting (10) to (9), we obtain:

xk+1
H = (DT

s Ds + IN=°2)
¡1DT

s Dsx
k
H + (11)

¯(DT
s Ds + IN=°2)

¡1DT
s (xL ¡ ~xkL)) '

xkH + ¯Us(xL ¡ ~xkL): (12)

Here Us = (DT
s Ds+IN=°2)

¡1Ds is an upsampling ma-
trix, and it is assumed that (DT

s Ds + IN=°2)
¡1DT

s Dsx
k
H '

xkH , i.e. the upsampling Us nearly compensates the down-
sampling Ds for xkH .

2.3. Proposed Algorithm

It can be verified using [13] that for the given BM3D frames
© and ª the solution (7) and the equation xkH = ªµk are
precisely correspond to the hard thresholding stage of the
BM3D filter [12]. Using this fact and (12), we arrive to the
two-stage iterative algorithm shown in Table 1.

Table 1. SR-BM3D Algorithm
Input: xL, s, Ds, Us, x0

H ;
Output: x̂MH ;
For: k = 0; 1; ::;M ¡ 1;
Stage 1: x̂kH = BM3D(x̂kH ; ¿µ),
Stage 2: x̂k+1

H = x̂kH + ¯Us(xL ¡Ds(x̂
k
H )).

The algorithm is described using standard 2D image vari-
ables (instead of vector notations used above). Here, Ds and
Us are down- and upsampling image domain operators de-
fined above by the corresponding matrices. BM3D(x̂kH ; ¿ µ)
is the BM3D filter applied to the high-resolution image esti-
mate x̂kH with the hard thresholding parameter ¿µ . The frames
©, ª are not shown because they are hidden inside of the
BM3D filter.

3. EXPERIMENTAL RESULTS

Two notes concerning the algorithm implementation for our
experiments are of importance. First, for downsampling Ds

in Stage 2 we use the MATLAB’s bicubic imresize function.
By default, the downsampling matrix Ds is defined by this
function and depends of the used interpolation method. Re-
spectively, we replace the upsampling operator in (12) by this
MATLAB’s function used in the upsampling mode, in partic-
ular, because the downsampling matrix Ds is unknown ex-
plicitly for the downsampling defined by this imresize func-
tion.

Second, the standard BM3D filter [12] has two successive
stages. The first is the hard thresholding filtering and the sec-
ond one is the empirical Wiener filtering. The derivation of
our algorithm leads to the BM3D with the single hard thresh-
olding stage. Our experiments have demonstrated that using
two stage BM3D with the Wiener filtering allows to improve
the results. Thus, in what follows, we show results for two
stage BM3D filter.

In this section, we provide experimental results of SISR
and demonstrate the superiority of the proposed algorithm
comparing to the state-of-the-art. Qualitative and quantitative
evaluations are performed adopting the testing benchmarks
of several recent SISR methods, including ANR [6], A+ [7],
Yang [2], Zeyde [5], and others.

The following image databases have been used for test-
ing [6] : ’Set5’ , ’Set14’, ’B100’, where images have been
downsampled by factors 2, 3 and 4, using ’bicubic’ resizing
kernel to form input low-resolution images. The quantitative
evaluation is done by PSNR values measured on the lumi-
nance channel similarly as it is done in the cited publications
and SSIM.

The following parameter settings are used in our experi-
ments:

- parameter ¯ is set to 1.75;
- CBM3D (Color BM3D) filter is used at each iteration

(overall 40 iterations) in two stages: hard thresholding and
Wiener filtering. For the hard thresholding stage of CBM3D:
color space transform - ’YCbCr’; patch size is 8x8; shift to
the next patch by 7; maximum number of similar patches -
16; macro block for a search - 29; transform used - 2D DCT
+ 1D Haar. For the Wiener filtering stage of CBM3D: color
space transform - ’Opponent’ (3-point DCT); patch size - 2s
(s is the scaling factor); shift by 2s¡ 2; maximum number of
similar patches - 32; macroblock search area - 39; transforms
used 2D identity + 1D Haar.

- the threshold parameter for Color BM3D (CBM3D) fil-
ter is varying in iterations as a quadratic function decreasing
from 12s to s.

As we can see from Table 2, the proposed approach out-
performs the state-of-the-art A+ algorithm by a good margin.
For visual comparison in Figures 1-2 we show examples of
super-resolved images by the proposed algorithm and some
competitors: true image (a), bicubic (b), A+ algorithm (c),
proposed algorithm (d). These examples demonstrate better
visual appearance of images generated by our method, edges
and details appear less blurry and much clearer than those pro-
duced by other methods. Figure 3 shows examples of SISR
applied to noisy input LR images, outperforming state-of-the-
art [16] by more than 1 db. The difference between the noisy
and noise-free SR-BM3D is that a low-resolution image xL in
Stage 2 of the SR-BM3D algorithm is replaced by the BM3D
pre-filtered xL.
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Table 2. Average PSNR (dB)/SSIM (x100) for upscaling factors x2, x3 and x4 for Set5, Set14 and B100 datasets
Dataset Scale Bicubic Zeyde GR ANR A+ SR-BM3D
Set5 x2 33.7 / 93.0 35.8 / 94.9 35.1 / 94.4 35.8 / 95.0 36.6 / 95.4 37.1 / 96.8

x3 30.4 / 86.8 31.9 / 89.7 31.4 / 88.4 31.9 / 89.7 32.6 / 90.9 33.3 / 91.7
x4 28.4 / 81.1 29.7 / 84.4 29.3 / 82.8 29.7 / 84.3 30.3 / 86.1 31.0 / 87.6

Set14 x2 30.2 / 86.8 31.8 / 89.9 31.7 / 89.7 31.8 / 90.0 32.3 / 90.5 32.8 / 90.8
x3 27.5 / 77.3 28.7 / 80.7 28.3 / 80.3 28.7 / 80.9 29.1 / 81.8 29.6 / 82.5
x4 26.0 / 70.1 26.9 / 73.3 26.6 / 72.7 26.9 / 73.5 27.3 / 74.8 27.7 / 75.8

B100 x2 29.3 / 83.3 30.4 / 86.8 30.2 / 87.0 30.4 / 87.1 30.8 / 87.7 31.5 / 87.9
x3 27.2 / 73.5 27.9 / 76.8 27.7 / 76.9 27.9 / 77.2 28.2 / 78.0 28.5 / 78.4
x4 25.9 / 66.6 26.5 / 69.5 26.4 / 69.4 26.5 / 69.8 26.8 / 70.7 27.0 / 71.3

4. CONCLUSION

The variational technique was proposed for derivation of the
SR-BM3D algorithm. Two important aspects define its dif-
ference from the conventional back-projection SISR method.
First, at every iteration an updated HR image is filtered, while
in the conventional back-projections algorithm a Gaussian
filtering is applied to the upsampled low-resolution residuals.
Second, the BM3D filtering derived from the variational set-
ting of the problem was used. The developed algorithm was
thoroughly compared with the current state-of-the-art algo-
rithms for noiseless data. The proposed SR-BM3D algorithm
using the internal dictionary image modeling has demon-
strated better performance than the methods based on much
more computationally demanding external dictionaries. The
developed approach was also extended to the case of noisy
observations again outperforming existed methods.
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Fig. 1. Cropped ’Butterfly’ image from Set5 with upscaling x4. From left to right: original HR image; result of bicubic
interpolation PSNR=21.1 dB;, A+ super-resolution PSNR=24.4 dB; super-resolution by SR-BM3D PSNR=26.1 dB.

Fig. 2. Cropped ’ppt3’ image from Set14 with upscaling x3. From left to right: original HR image; result of bicubic interpolation
PSNR=23.7 dB; A+ super-resolution PSNR=26.1 dB; super-resolution by SR-BM3D PSNR=27.3 dB.

Fig. 3. Noisy LR images ’horses’ (additive white Gaussian noise, sigma = 25) and ’dog’ (sigma = 20) and results of SR-BM3D
(’horses’: PSNR = 25.27 db/SSIM = 0.664; ’dog’: PSNR = 29.46 db/SSIM = 0.776) with upscaling x2
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