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ABSTRACT

In mixed-resolution multiview setups, a scene is captured

from various viewpoints with cameras having different spa-

tial resolutions. Compared to full-resolution systems, mixed-

resolution setups allow for savings with respect to data trans-

mission, storage, and costs. However, for applications like

free viewpoint television, high-quality images are required for

all available camera perspectives. Therefore, high-resolution

cameras can be used to increase the image quality of a neigh-

boring low-resolution view. Due to occlusions, some parts of

the scene are invisible in the high-resolution reference views

and thus cannot be directly synthesized from the neighboring

perspectives. In this paper, we propose to integrate the idea of

single-image super-resolution to better handle occluded areas

and thus to improve the super-resolution quality for mixed-

resolution multiview images. For a downsampling factor of

4, the proposed method achieves an average gain of 0.53 dB

with respect to a comparable multiview super-resolution ap-

proach.

Index Terms— Multiview, Super-Resolution, Mixed-

Resolution

1. INTRODUCTION

Super-resolution (SR) is a widely discussed area in the field

of image and video processing and aims at increasing the

image quality for a given low-resolution image or video

sequence [1]. In single-image SR (SISR), the desired high-

resolution output is estimated from the low-resolution input

image itself. Therefore, in example-based SR, the core idea

is to learn the relationship between given pairs of low- and

high-resolution image patches. The learned relationship is

used afterwards to estimate the missing high-frequency con-

tent for the low-resolution input block [2]. In [3], dictionaries

are built by randomly choosing raw patches from a given set

of training images. In contrast, [4] uses coupled dictionar-

ies, jointly trained from low- and high-resolution patch pairs

to sparsely represent the low-resolution input patch. The

authors in [5] perform SR, using the idea of sparse represen-

tation combined with a postprocessing step based on natural

image prior.

... ...... ... ...

Fig. 1. MR-MVD scenario: A scene and the corresponding

depth information is taken by cameras with different spatial

resolutions.

For low-resolution video sequences, temporally adjacent

frames can be utilized for SR [6]. These approaches typ-

ically require sub-pixel motion in order to super-resolve a

low-resolution frame.

Besides using temporal information, multiview setups

allow for exploiting information from neighboring camera

perspectives. Fig. 1 shows an example for a mixed-resolution

(MR) multiview video plus depth (MVD) scenario where a

scene is taken by multiple cameras having different spatial

resolutions. Additionally, the corresponding depth infor-

mation is available at each viewpoint which can be either

estimated [7] or recorded using time-of-flight cameras [8]

or devices like the Microsoft Kinect [9]. In [10], a SR ap-

proach has been proposed for MR-MVD setups. By using

the corresponding depth information, the neighboring high-

resolution reference perspectives are projected onto the image

plane of the low-resolution view. Afterwards, the required

high-frequency information is extracted from the projection

results. In our previous work [11], a method has been pro-

posed to synthesize reliable high-frequency information even

in the case of inaccurate depth acquisition or erroneous depth

calibration. However, due to occlusions, some parts of the

scene are only visible in the low-resolution view and can-

not be captured from the available high-resolution cameras.

Thus, depending on the multiview setup, large image areas

might exist for which the missing high-frequency part cannot

be directly synthesized. In previous work, e.g. [10] and [11],

occluded areas are not explicitely considered. So, as a refine-

ment step, the projected high-frequency information could
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Fig. 2. Basic concept of HF-SYN. The high-frequency part of

the reference perspective is projected and added to the upsam-

pled low-resolution image in order to obtain the result l̂(u, v).

be extrapolated from the regions where it is known into the

remaining unknown image areas using signal extrapolation

techniques, such as [12] or [13]. However, for MR stereo

setups, large occluded areas likely occur at the image border

making the extrapolation very challenging.

Inspired by [14], in this paper, we propose to incorporate

the idea of SISR in order to improve the SR quality for MR

multiview images, especially in occluded areas. The rest of

the paper is structured as follows. The basic concept of SR

based on high-frequency synthesis is discussed in Section 2.

The proposed combination is explained in Section 3. Simu-

lation results are given in Section 4. Finally, the conclusions

are presented in Section 5.

2. SUPER-RESOLUTION BASED ON

HIGH-FREQUENCY SYNTHESIS

The basic concept of high-frequency synthesis

(HF-SYN) [11], as used for this work, is depicted in Fig. 2.

While the approach can be easily adapted to different mul-

tiview scenarios, the idea is shown for an MR stereo setup.

Regarding multiview SR, stereo setups are the most chal-

lenging scenario, since only one neighboring high-resolution

view is available, leading to large occluded areas.

Without loss of generality, the scene is taken by a high-

resolution camera from the right, indicated by r(u, v) and a

low-resolution camera from the left, written as l̃(ũ, ṽ). The

image coordinates on the low- and high-resolution grids are

written as (ũ, ṽ) and (u, v), respectively. First, the low-

resolution image l̃(ũ, ṽ) is enlarged to match the spatial

resolution of the reference camera, resulting in an upsampled

low-resolution image ll(u, v). Then, the reference perspec-

tive is divided into a low- and a corresponding high-frequency

part. The low-frequency part rl(u, v) is obtained by filtering,

downsampling, and interpolation. The corresponding high-

frequency part, written as rh(u, v), is computed afterwards

by subtracting rl(u, v) from r(u, v). Since this work consid-

ers a video plus depth scenario, depth-image-based rendering

(DIBR) [15] can be used to project the high-frequency part

from the reference view onto the image plane of the low-

resolution camera perspective.

Therefore, let (ur, vr) be a pixel position in the high-

frequency image rh(u, v) with subscript r indicating the right

reference perspective. According to





xw

yw
zw



 = Rr
−1



z ·Ar
−1





ur

vr
1



− tr



 , (1)

the position is converted into three-dimensional world coor-

dinates (xw, yw, zw). The intrinsic camera matrix is denoted

as A, while the extrinsic camera parameters are written as ro-

tation matrix R and translation vector t. The physical depth

value, denoted as z, is computed from the corresponding

depth map entry dr(ur, vr). In a second step, the obtained

3D coordinates are projected onto the image plane of the

low-resolution view via

zl ·





ul

vl
1



 = Al



Rl





xw

yw
zw



+ tl



 , (2)

where subsricpt l denotes the upscaled left view. Finally, the

discussed projection leads to the synthesized high-frequency

image l̂h(u, v) which is added to the low-resolution view

ll(u, v) in order to create the desired high-resolution image

l̂(u, v).

3. PROPOSED COMBINATION OF SINGLE-IMAGE

AND MULTIVIEW SUPER-RESOLUTION

The concept of HF-SYN, as discussed in the previous section,

mainly suffers from two aspects. First, due to occlusions,

some image parts might not be visible in the reference per-

spectives. Thus, for those areas, the missing high-frequency

information cannot be directly synthesized. For handling

these occlusions, the high-frequency information could be

extrapolated from the regions where it is known into the

remaining unknown areas. However, depending on the con-

figuration of the MR array, large unknown areas may exist,

especially at the image border in case of stereo setups, making

the extrapolation very challenging. As a second drawback,

HF-SYN typically requires error-free depth information for

projecting the high-frequency components and leads to an-

noying visual artifacts in case of inaccurate depth informa-

tion [11].

Fig. 3 shows the block diagram of the proposed SR

approach for MR multiview images. Therefore, the basic

HF-SYN method is extended by first, a consistency check for

rejecting invalid synthesized high-frequency information and

second, the incorporation of SISR for a novel way of handling
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Fig. 3. Proposed integration of SISR for MR multiview im-

ages. The extension to HF-SYN is highlighted in gray with

CC denoting the consistency check.

occluded areas. While the consistency check is discussed in

Section 3.1, the proposed integration of SISR is explained in

Section 3.2.

3.1. Consistency check

Due to inaccurate depth information, which likely occurs at

object boundaries, the corresponding high-frequency parts

may be projected to wrong positions. Since these projection

errors cannot contribute to a convincing SR result, they have

to be rejected. Therefore, let (ur, vr) be a pixel position in the

right high-frequency image rh(u, v). By DIBR, the pixel is

projected onto the image plane of the left low-resolution view,

resulting in a position (ul, vl). The warped high-frequency in-

formation is then added to the low-resolution view at position

(ul, vl), resulting in l̂(ul, vl). By comparing l̂(ul, vl) to the

original pixel value r(ur, vr), the reliabilty of the underlying

depth information can be verified as follows.

To account for potential illumination inconsistencies

across different views, the consistency check is conducted

in the YCbCr color space. Therefore, the maximum absolute

difference is computed for the two color components Cb and

Cr, excluding the luminance Y. If the difference exceeds a

pre-defined threshold p, the corresponding high-frequency

information is rejected, otherwise the pixel position (ul, vl)
is marked in a map m(u, v). The influence of the discussed

consistency check is visualized in Fig. 4. While the left side

shows the result of basic HF-SYN, the output after applying

the consistency check is depicted in the middle image. The

Fig. 4. Result of HF-SYN before (left) and after (middle) ap-

plying the consistency check. Mask m(u, v), marking pixel

positions with valid high-frequency information is shown on

the right side.

corresponding mask m(u, v), marking all positions with valid

high-frequency information in white color is shown on the

right side.

3.2. Integration of single-image super-resolution

Typically, due to occlusions and the rejection of invalid in-

formation, the synthesized high-frequency image is not com-

pletely known. Since a complete high-pass image is desired

for SR, the high-frequency content could be extrapolated into

the occluded areas. However, the handling of large connected

occluded parts is a very challenging task for common extrapo-

lation approaches, such as [12] or [13]. Therefore, we propose

to replace the high-frequency extrapolation by integrating the

idea of SISR. As visualized in Fig. 3, the low-resolution in-

put image l̃(u, v) is not only enlarged by interpolation, result-

ing in the interpolated image ll(u, v), but also by applying an

SISR approach, resulting in a super-resolved image l̂SI(u, v).
Bascically, any kind of SISR method can be used. Regarding

the image quality, especially for larger downsampling factors,

SISR is typically better than pure interpolation but worse than

directly synthesizing high-frequency information from neigh-

boring perspectives. Therefore, the proposed combination of

single-image and multiview SR is written according to

l̂c(u, v) =

{

l̂(u, v), ∀(u, v)|m(u, v) = 1

l̂SI(u, v), ∀(u, v)|m(u, v) = 0
, (3)

where the combined SR result is denoted as l̂c(u, v) and the

information from SISR is used to estimate the missing high-

frequency information for both, occluded areas and pixel po-

sitions where the high-frequency information has been re-

jected by the consistency check.

4. SIMULATION RESULTS

The proposed combination of single-image and multiview

SR has been tested for the datasets aloe, art, baby1, bowl-

ing2, cloth1, cloth3, dolls, laundry, midd1, moebius, and

reindeer [16], [17]. For all datasets, camera views 1 and 5

have been chosen as left and right views, respectively. The

left low-resolution view has been simulated by filtering and

downsampling. Therefore, a Lanczos kernel has been used

and the downsampling factor has been varied between 2 and
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Table 1. PSNR evaluation for all considered datasets and different downsampling factors in dB.

aloe art baby1 bow-

ling2

cloth1 cloth3 dolls laun-

dry

midd1 moe-

bius

rein-

deer

avg. ∆
PSNR

downsampling factor: 2

BIC 33.21 37.38 36.08 37.40 35.61 37.19 36.53 36.06 35.49 36.96 36.36 -

HF-SYN 35.34 37.04 37.72 38.15 38.81 38.49 36.66 35.86 35.28 37.06 36.20 0.76

HF-SYN-FSE 35.51 37.43 37.73 38.19 38.83 38.58 36.88 35.97 35.36 37.22 36.32 0.89

Yang [4] 34.84 38.62 36.84 38.08 37.06 38.02 37.55 37.29 36.26 37.76 37.09 1.01

proposed 36.20 38.19 37.97 38.61 39.06 38.75 37.26 36.43 35.58 37.53 36.66 1.27

Kim [5] 34.56 38.96 36.89 38.13 36.64 38.02 37.66 37.35 36.34 37.94 37.22 1.04

proposed 36.13 38.28 37.97 38.61 39.00 38.77 37.27 36.47 35.58 37.57 36.66 1.28

downsampling factor: 4

BIC 27.11 31.53 31.14 32.87 27.98 30.69 30.61 29.27 30.74 31.90 30.40 -

HF-SYN 30.74 32.35 34.67 34.61 33.82 34.34 32.41 31.25 32.40 33.19 32.19 2.52

HF-SYN-FSE 30.94 32.82 34.70 34.70 33.89 34.51 32.73 31.49 32.52 33.48 32.51 2.73

Yang [4] 27.42 32.13 31.26 33.14 28.40 30.94 31.07 29.79 31.21 32.30 30.76 0.38

proposed 31.22 33.24 34.61 34.97 33.98 34.57 32.93 31.73 32.75 33.61 32.67 2.91

Kim [5] 27.42 32.70 31.48 33.39 28.33 30.94 31.45 30.05 31.65 32.57 30.99 0.61

proposed 31.24 33.54 34.73 35.13 33.96 34.64 33.12 31.86 32.97 33.74 32.81 3.05

4 in both spatial dimensions. Since the image acquisition

model of the low-resolution camera cannot be assumed to

be known, bicubic filtering has been used for the reference

perspective. For later upsampling, bicubic interpolation has

been used for both camera perspectives.

For evaluation, the proposed combination has been com-

pared against bicubic interpolation (BIC), high-frequency

synthesis, as discussed in Section 2 (HF-SYN), and HF-

SYN-FSE where the synthesized high-frequency information

has been extrapolated using the Frequency Selective Extrap-

olation (FSE) from [12]. The proposed combination has been

tested for the SISR approaches of [4] and [5].

For FSE, a blocksize of 4 has been used with a support

area of 14 samples. The number of iterations has been set

to 300 and the FFT size has been set to 32×32. For the dis-

cussed consistency check, the threshold p has been chosen as

4. For the approach of [4], dictionaries of size 1024 have been

trained for both considered downsampling factors. While the

patch size has been set to 5, the number of patches has been

set to 100000.

Table 1 summarizes the PSNR evaluation for all consid-

ered multiview datasets and different downsampling factors.

The last column gives the average gain with respect to BIC.

For a downsampling factor of 2, the basic multiview approach

HF-SYN achieves an average gain of 0.76 dB compared to

BIC. Using FSE for high-frequency extrapolation leads to an

additional gain of 0.13 dB. On average, the considered SISR

approaches [4] and [5] perform slightly better than HF-SYN

and for some test sets, such as dolls, laundry or midd1, they

also beat the proposed combination. However, averaged over

all datasets, our proposed combination outperforms both, the

single-image and the multiview SR approaches. Compared to

BIC, the SISR approaches result in average gains of 1.01 dB

and 1.04 dB, whereas the proposed combination ends up with

gains of 1.27 dB and 1.28 dB for [4] and [5], respectively.

For a downsampling factor of 4, the performance of the

considered SISR approaches drops heavily, whereas HF-

SYN achieves an averaged gain of 2.52 dB with respect to

BIC. Again, the proposed combination outperforms both, the

single-image and the multiview approaches, resulting in av-

eraged gains of 2.53 dB and 2.44 dB compared to the SISR

approaches. Averaged gains of 0.39 dB and 0.53 dB are

achieved with respect to HF-SYN.

Compared to HF-SYN-FSE, the proposed method achieves

average gains of 0.39 dB and 0.32 dB for downsampling fac-

tors of 2 and 4, respectively. Thus, the simulation results

illustrate that the novel integration of SISR is a convincing

way of handling occluded areas in MR multiview scenarios.

Fig. 5 finally shows the visual quality of the proposed SR

method for image details of the midd1 and reindeer datasets

and a downsampling factor of 4. The figure shows from left

to right, the original image and the SR results of HF-SYN,

HF-SYN-FSE, and [5]. The right most column shows the

proposed combination of single-image and multiview SR.

For HF-SYN, some image parts cannot be directly synthe-

sized from the reference perspective, resulting in annoying
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Original HF-SYN HF-SYN-FSE Kim [5] proposed

Fig. 5. Visual comparison between the SR approaches HF-

SYN, HF-SYN-FSE, Kim [5], and the proposed combination.

visual artifacts at the transistions between low-resolution and

super-resolved high-resolution parts. Due to the extent of

these occluded areas, the desired high-frequency part cannot

be convincingly reconstruced in HF-SYN-FSE. As can be

seen for [5], the resulting image quality of SISR is typically

better than simple interpolation but worse than extracting

the missing high-frequency information from neighboring

reference views. Finally, the proposed method combines

the benefits of single-image and multiview SR, leading to a

remarkable gain in visual quality.

5. CONCLUSION

In this paper, the combination of single-image and multiview
super-resolution has been proposed for mixed-resolution im-
age plus depth data. Using the idea of single-image super-
resolution leads to a novel way of handling occluded areas in
multiview scenarios. The simulation results illustrate that the
proposed combination outperforms both, pure single-image
and multiview super-resolution methods, resulting in an av-
erage gain of 0.53 dB for a downsampling factor of 4 with
respect to the reference multiview approach. In addition, the
proposed method leads to a remarkable gain in visual qual-
ity. For future work, the proposed idea could be extended to
mixed-resolution multiview video data.
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