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ABSTRACT

The subject of this paper is the reconstruction of a signal or
an image under constraints of non negativity and of constant
sum. The sum constraint is imposed by the use of scale in-
variant divergences, which allows the development of simple
iterative reconstruction algorithms. Two families of diver-
gences between two data fields p and q are considered, the
α-divergence and the β-divergence. A procedure is applied
to make them scale-invariant w.r.t. p and q. The resulting
method is an interior point type algorithm useful in the con-
text of ill-posed problems. Numerical illustrations are given
for the deconvolution of a solar spectrum and an interferomet-
ric image.

Index Terms— Inverse problems, non-negativity and
sum constrained minimization, scale invariant divergences.

1. INTRODUCTION

The problem we consider in this work appears frequently in
various physical applications, such as deconvolution of spec-
tra or images, for example. The task is to minimize w.r.t. the
unknown x a divergence between the measured noisy data,
here p, and the physical model q = Hx, with hij ≥ 0 subject
to the constraints xi > 0 ∀i,

∑
i xi = C, C > 0. In the spe-

cific deconvolution problem considered here, the matrix H is
highly ill-conditioned and moreover we have

∑
i hij = 1 so

that C =
∑
i pi.

This problem has been studied extensively in recent years
and some solutions have been proposed mainly in the case of
a quadratic cost function and KL divergence. Here, we pro-
pose a method applicable to any divergence constructed from
a convex function. The non negativity constraint is taken into
account by applying the KKT (Karush Kuhn Tucker) condi-
tions, [1]. We have shown in previous papers, [2, 3, 4], that
the sum constraint can be taken into account using a change of
variables. In the present paper we show how to obtain a scale
invariant divergence, so that the sum constraint can be ful-
filled very simply in the iterative algorithms due to the scale
invariance properties of such divergences.

The proposed iterative algorithms are detailed and illus-
trated on the deconvolution of two astrophysical examples.
The first one is the deconvolution of solar spectrum show-

ing pure emission lines in the extreme UV. The second one is
the deconvolution of a possible Earth-like exoplanet observed
with an interferometer in space.

2. SCALE INVARIANT DIVERGENCES

We consider divergences constructed from the convex func-
tion:

f (x) =
1

γ (γ − 1)
[xγ − γx− (1− γ)] . (1)

For this function, we have f (1) = 0 and f ′ (1) = 0. A
Csiszár divergence, [5], between two data fields p and q built
on a convex function f is defined by:

A (p‖q) =
∑
i

qif

(
pi
qi

)
(2)

and for the particular function given by (1), we obtain:

Aγ (p‖q) =
1

γ (γ − 1)

[∑
i

(
pγi q

1−γ
i − γpi + (γ − 1) qi

)]
.

(3)

This is the so-called α-divergence widely analyzed by Amari
et al., [6, 7]. In the same way, the Bregman divergence, [8],
founded on the convex function f , is defined as:

B (p‖q) =
∑
i

(
f (pi)− f (qi)− (pi − qi) f

′
(qi)
)
, (4)

and using the function f , we obtain:

Bγ (p‖q) =
1

γ (γ − 1)

[∑
i

(
pγi + (γ − 1) qγi − γpiq

γ−1
i

)]
.

(5)

This is the β-divergence proposed by Basu et al., [9] and by
Eguchi and Kano, [10].

The first step in our analysis is to apply on the diver-
gences, (3) and (5), a transformation that allows us to obtain
new divergences that become insensitive to a positive mul-
tiplicative constant factor of the values of q. The aim is to
obtain divergences whose values depend only of the shape of
p and q, and not of their relative amplitudes.

The procedure suggested by Eguchi and Kato, [11] can be
summarized as follows for a divergence D (p‖q):
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1. Considering the factor T (p, q) > 0, express D(p‖Tq).

2. Solve, for T > 0 the equation ∂D(p‖Tq)
∂T = 0.

3. Insert the expression of T so obtained in D(p‖Tq).
The resulting factors T (p, q) obtained for, respectively, the
α-divergences and the β-divergences are :

TA (p, q) =

[∑
j p

γ
j q

1−γ
j∑

j qj

] 1
γ

, (6)

TB (p, q) =

∑
j pjq

γ−1
j∑

j q
γ
j

. (7)

When q → p, TA (p, q) and TB (p, q)→ 1. The scale invari-
ant divergences obtained from (3) and (5) are given by:

AIγ(p‖q) =
1

γ − 1

((
∑
i

qi)
γ−1
γ (
∑
i

pγi q
1−γ
i )

1
γ −

∑
i

pi)
(8)

and

BIγ(p‖q) =
1

γ(γ − 1)

(
∑
i

pγi − (
∑
i

qγi )
1−γ(

∑
i

piq
γ−1
i )γ).

(9)

These new divergences are insensitive to scale changes on q
and appear as the difference of two terms. We can apply on
each of these terms an increasing function without modifying
the sign of the expression. We perform such operation using
the deformed or generalized logarithm function defined for
u > 0 by:

Ld(u) =
ud − 1

d
(10)

whose limits are (u− 1) if d → 1 and log(u) if d → 0. In
this later case we obtain respectively:

LAIγ (p‖q) =
1

γ
log
∑
i

qi −
1

(γ − 1)
log
∑
i

pi

+
1

γ (γ − 1)
log
∑
i

pγi q
1−γ
i

(11)

which has been exhibited by Cichocki et al., [12, 13], and

LBIγ (p‖q) =
1

γ (γ − 1)
log
∑
i

pγi +
1

γ
log
∑
i

qγi −

1

γ − 1
log
∑
i

piq
γ−1
i

(12)

which is the divergence of Fujisawa, [14] previously used in
[4]. Note that the logarithmic forms of the divergences are
also invariant to a scale change on p.

A similar analysis could be performed on the generalized
αβ divergence proposed by [15], from which the particular
cases of (3) and (5) are recovered. For the sake of clarity, this
generalized approach is not presented here.

3. MINIMIZATION ALGORITHMS

In this section, we develop iterative algorithms based on the
scale invariant divergences LAIγ and LBIγ and we denote
by p the vector of noisy data and by q the vector describing
the physical process: q = Hx. We consider the problem:

min
x
D (p‖Hx) s.t xi ≥ 0,

∑
i

xi = C. (13)

where D is any divergence. The non-negativity constraint is
taken into account using the KKT conditions. As developed
in [1, 4], the KKT conditions for the non-negativity constraint
expresses that at the convergence to the optimum x∗, we must
have:

x∗i [∇xD (p‖Hx∗)]i = 0. (14)

This condition can then be used as a descent direction in an
iterative gradient descent algorithm as follows:

xk+1
i = xki + αki x

k
i

[
−∇xD

(
p‖Hxk

)]
i

(15)

To fulfill the non-negativity of the estimate at each iteration,
the maximum stepsize αkmax must be determinated first, then
to ensure the convergence, the stepsize αk is computed in
the range

[
0, αkmax

]
using a line search method such as the

Armijo method [16] for example.
We can deal with the constraint of constant sum by a

change of variables as mentionned in [4]. For the scale in-
variant divergences, two more possibilities are offered due to
the properties of these divergences:

i) either in the iterative minimization process, we proceed
to a normalization of the solution after each iteration. This
procedure does not modify the value of the objective function
and can be associated to any algorithm.

ii) or we use a specific property of the gradient of these
divergence ; in the following we focus on the corresponding
algorithms.

The iterative algorithm, (15), developed for the diver-
gence LAIγ leads to:

xk+1
i = xki + αkxki

[
HT pγ ◦

(
qk
)−γ∑

j p
γ
j

(
qkj
)1−γ −HT 1∑

j q
k
j

]
i

(16)
and for the divergence LBIγ :

xk+1
i = xki +αkxki

[
HT p ◦

(
qk
)γ−2∑

j pj
(
qkj
)γ−1 −HT

(
qk
)γ−1∑

j

(
qkj
)γ
]
i

(17)
In these expressions, the symbol ”◦” is used for the Hadamard
(pointwise) product.

It can be easily verified that for the algorithms (16) and
(17), we have

∑
i x

k+1
i =

∑
i x

k
i , then, the sum constraint is

fulfilled for all the successive estimates if the sum constraint
is imposed on the initial estimate. This is the main property
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connected to scale invariant divergences and consequently the
proposed procedure is an interior point method, i.e all the suc-
cessive estimates fulfill the constraints.

Obviously multiplicative algorithms could be proposed as
well following [1], but the convergence of such algorithms is
never demonstrated but for particular cases (KL divergence
and least squares) due to the lack of tuning parameter (step-
size). Moreover, the convergence speed of these algorithms,
if they converge, is generally low and the property of spon-
taneous fixed sum appearing in procedure ii) is lost then the
procedure i) must be used.

Let us note that the algorithms corresponding to the di-
vergences AIγ and BIγ , (8) and (9), are very similar to those
of (16) and (17). The difference appears as a multiplicative
factor depending of the iteration k in the corrective part of
the algorithms, beside αk. This factor will be implicitly taken
into account during the computations dealing with the step
size.

4. SIMULATIONS RESULTS

4.1. Solar spectrum

The data used in this section is a solar spectrum extracted
from the BASS 2000 Solar survey archive available on line at
http : //bass2000.obspm.fr/. It corresponds to solar ul-
traviolet emission lines for wavelengths from 760 to 780 Å,
(Figure 1 Top). It shows a few Ne VIII lines emitted from the
transition region between the corona and the chromosphere.

The spectrum sampled over 2048 data points is taken as
the object x. We assume that the spectrum is analyzed with
a spectrometer producing a convolution effect. The blurring
window H depends on diffraction effects and geometrical
construction of the spectrometer. It is not represented here
for the sake of conciseness.

The blurred data suffer a Poisson transformation (corre-
sponding to photodetection) followed by the addition of an
independent Gaussian noise. These effects can be mathemat-
ically described by:

p = P(Hx) + n (18)

with n ∼ N (0, σ2), resulting p data are shown in the bottom
curves of Figure 1 for a total number of 3×106 photoelectrons
and a standard deviation of σ = 100 photons. The LAIγ and
LBIγ , (16) and (17) are run for γ = 3. The step size has been
computed by the Armijo rule. Top curves of Figure 2 repre-
sent a plot of the divergences LAI3 (red line) and LBI3 (blue
line) of (11) and (12) as a function of the number of iterations.
It is then verified that the criterion to be minimized is a de-
creasing function of k. Bottom curves of Figure 2 is a plot of
the error of reconstruction between the reconstructed estimate
xk and the exact value x∗ (known in this numerical simula-
tion). Note that to be independent of the divergence, the re-
construction error computed is the normalized quadratic one,
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Fig. 1. Top: Emission lines x of the solar spectrum and con-
volved spectrum q = Hx. Bottom: Noisy spectrum p with
3.106 photons in the whole spectrum and σ = 100.
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Fig. 2. Top: LAI3 (red line) andLBI3 (blue line) divergences
as a function of k. Bottom : LAI3 (red line k = 139) and
LBI3 (blue line k = 678) reconstruction error as a function
of k.
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||xk − x∗||/||x∗||. These curves exhibit the classical behav-
ior: after a decrease of the reconstruction error, we observe
an increase of this error. Obviously this phenomena known as
”semi-convergence” does not depend on the form of the error
function. It corresponds to the fact that when the iterations
progress, high frequencies components appear in the solution
xk while simultaneously Hxk does not changes.

It is found, in this example, that the LAI procedure con-
verges more rapidly to the best estimate than the LBI one
(iteration 139 vs 678). Of course, these numerical values,
stopping iteration and corresponding error of the reconstruc-
tion, strongly depend on the parameters of the simulation.

As usual in the context of an ill-posed problem, the iter-
ations number required to reach the minimum of the recon-
struction error increases with the quality of the data, the iter-
ations must be rapidly stopped for noisy data to prevent the
amplification of noise. Results obtained with the two algo-
rithms are very satisfactory in a qualitative sense and close
one another, as it can be seen in Figure 3. Reconstructed
spectra can be used effectively for a physical interpretation. It
was, of course, checked that the integral of the reconstructed
spectra has been preserved throughout the iterations and the
representation at the scale of the object in Figure 3 is made
for practical considerations.

Influence of γ. We have chosen γ = 3 in the previous
experiments and it would be interesting to study the influence
of gamma on the quality of reconstruction. A first study was
done by computing the value of the reconstruction error as a
function of k and γ in the case of the LBIγ algorithm. and
the result is plotted as a contour plot in the Figure 4. We can
see that the minimum is obtained for γ = 2 at iteration 662.

4.2. Interferometric image

The data used in this section correspond to future observa-
tions in space with sparse array of interferometers as in the
Luciola project of Labeyrie et al. [17]. A particular point of
these observations is that spatial frequencies are transmitted
in non-continuous regions of the Fourier plane. The recon-
struction must fill the empty zones, as discussed in Aime et
al. [18]. A thorough review of array configurations can be
found in the book of Kopilovich and Sodin [19]. Here we
used 35 identical apertures. As a result of our choice of a
particular non-redundant configuration, the PSF (Fig. 5, top
left) appears as the replication on a grid of the Airy pattern of
the giant meta-telescope we seek to synthesize, with an added
speckle-like structure due to the sparsity of the configuration
(35 apertures instead of 2500 for a regular grid).

The object x is a possible exoplanet corresponding to the
Earth-Moon system shown in Fig. 6. Due to the structure
of the PSF, its pattern appears as replicas in the noiseless fo-
cal plane image Hx of Fig. 5. The distance between the two
bodies is chosen on purpose to introduce a visual ambiguity in
Hx whether the Moon is at the right or at the left of the Earth.
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Fig. 3. LAI3 (red line k = 139) and LBI3 (blue line
k = 678) reconstruction spectra at the minimum of the re-
construction divergence.
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Fig. 4. LBIγ normalized quadratic reconstruction error as a
function of k and γ, minimum for γ = 2 and k = 662.

The image p (bottom figure) result of the transformation de-
scribed by Eq. 18 for 3 × 107 photons and n ∼ N (0, 29).
Numerical data are of 1024× 1024 points.

During iterations, both LAI and LBI algorithms gradually
suppress image replicas and improve the final image. Best re-
sults obtained for LAI2 and LBI2 are given in Fig. 5. Com-
parison of Fig. 5 and Fig. 6, either grayscale or cuts, shows
the excellent results obtained by the application of these al-
gorithms. Much better results are obtained with less itera-
tion steps with LBI2 (k = 37) than with LAI2 (k = 429),
the minimum of the reconstruction error being 0.2328 and
0.2691, respectively.

5. CONCLUSION

Iterative algorithms of minimization subject to constraints of
non negativity and constant sum have been proposed and have
given excellent results for 1D and 2D data. The constant sum
constraint is taken into account by the use, as objective func-
tions, of scale invariant divergences. This leads to interior
point type algorithms that allow the stopping of iterations be-
fore convergence, useful in the context of ill-posed problems.
More experiments need to be conducted, for example the dif-
ference of behavior of LAI and LBI algorithms observed in
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Fig. 5. Top: PSF (left) and noiseless focal plane image Hx
(right). Bottom: noisy image p for 30 M photons and σ2 =
29 (left) and a radial cut (right).

our two examples should be further investigated. The pro-
posed algorithms can be easily extended to the blind deconvo-
lution problem due to commutativity of the convolution prod-
uct. The method can be directly applied to the linear unmixing
problem with the important advantage that generally the ma-
trix H is not ill-conditioned in this case. The application to
NMF is not immediate and concerns uniquely the abundance
vectors, because the matrix product is not commutative.
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