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ABSTRACT

Accurate and reliable estimation of the heart rate using wear-
able devices, especially during physical exercise, must deal
with noisy signals that contain motion artifacts. We present
an approach that is based on photoplethysmographic (PPG)
signals which are measured with two wrist—type pulse oxime-
ters. The heart rate is related to intensity changes of the re-
flected light. Our proposed method suppresses the motion ar-
tifacts by adaptively estimating the transfer functions of each
of the three—axis acceleration signals that produce the arti-
facts in the PPG signals. We combined the output of the six
adaptive filters into a single enhanced time—frequency domain
signal based on which we track the heart rate with a high ac-
curacy. Our approach is real-time capable, computationally
efficient and real data results for a benchmark data set illus-
trate the superior performance compared to a recently pro-
posed approach.

Index Terms— Photoplethysmography (PPG), Heart
Rate Monitoring, Adaptive Filters, Accelerometer, Time—
Frequency, Noise Reduction, Motion Artifacts

1. INTRODUCTION

Wearable devices that contain optical heart rate monitors are
an emerging technology that can be used, e.g as a tool to con-
trol the training load during physical exercises or to moni-
tor physiologic conditions during daily activities. In contrast
to the previous generation of devices, it is no longer neces-
sary to wear an additional chest strap, since the heart rate is
monitored from the wrist by means of photoplethysmography
(PPG).

PPG [1] refers to a noninvasive indirect measurement of
the blood flow. Pulse oximeters illuminate the skin along with
underlying blood vessels via light-emitting diodes (LEDs) to
measure intensity changes of the reflected light that is ab-
sorbed by the photo diodes. Based on the intensity change
in the PPG signal, the arterial oxygen saturation and the heart
rate can be estimated. Combining the PPG signal with an
electrocardiogram (ECG), allows for deriving additional pa-
rameters, such as, e.g. the pulse arrival time (PAT) which is
correlated with the blood pressure [2].
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However, the PPG measurement is susceptible to motion
artifacts (MA), which inevitable occur during physical exer-
cises. Motion induced artifacts can strongly deteriorate the
quality of a PPG signal and signal processing techniques are
required to remove the MA from the PPG signal prior to esti-
mating the heart rate.

In recent years, different approaches on how to clean the
PPG signals from MA have been proposed. In [3], three syn-
thetic noise reference signals are generated internally from
the artifact contaminated PPG signal itself. The reference
signals were constructed from singular value decomposition
(SVD), fast Fourier transform (FFT), and independent com-
ponent analysis (ICA) and are applied to the adaptive step-
size least mean squares (AS-LMYS) filter for artifact removal.
However, this method is limited by the sensitivity to the refer-
ence signal, which is not able to represent all real-world char-
acteristics, especially during various forms of physical exer-
cise.

ICA was also used in [4], where motion artifacts were re-
duced by exploiting the quasi-periodicity of PPG signal and
the independence between the PPG and the motion artifact
signals via a combination of ICA and block interleaving. Kr-
ishnan et al. [5] propose a frequency domain ICA routine that
is more effective in artifact removing than time-domain ICA.
However, ICA based approaches rely on the assumption of
statistical independence of motion artifacts and arterial vol-
ume variations, which could not be confirmed by Yao and
Warren [6].

In order to model the influence of motion to the PPG sig-
nals, other approaches use adaptive filter algorithms and ac-
celeration data as a motion reference [7-9]. However, all of
these methods were examined for small movements and the
PPG sensors were placed at the finger ring or forehead and
not at the wearer’s wrist. The performance during physical
exercises is expected to decrease.

Zhang et al. [10] proposed a framework for heart rate
monitoring during intensive physical exercise consisting of
signal decomposition, sparse signal reconstruction and spec-
tral peak tracking with verification. However, this approach
is computationally demanding and may not work on real-time
fitness devices or may consume to much battery power.
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Our contribution lies in proposing a new algorithm for
heart rate monitoring based on PPG and acceleration signals
that is both highly accurate and low in computational cost.
The proposed method for heart rate monitoring is based on
a set of adaptive filters that estimate the effects of motion in
the PPG signal. By combining all filter outputs in the time—
frequency domain, we are able to track the heart rate based on
an enhanced signal. We show that our method outperforms
previous work on a reference data set.

The remainder of the paper is organized as follows: First,
Section 2 presents the signal model used in this work. Our
method is proposed in Section 3, followed by the description
of the data set and the results in Section 4. Finally, a conclu-
sion is given in Section 5.

2. SIGNAL MODEL

In this paper, we propose the following measurement model:
p(n) = s(n) + m(n) + v(n) (1)

Here, p(n) is the measured PPG signal, s(n) is the noise-
free PPG signal which is sought for, m(n) are the motion
induced artifacts and v(n) ~ N(0, 0?) represents the sensor
and amplifier noise. We next model the effects of the motion
artifacts m(n) in dependence of the measured three channel
acceleration signal vector a(n) by introducing a time-varying
system with impulse response h(n,a,w, ) and rewrite the
model using matrix notation:

p(n) = s(n) +h' (n, 0w, Pla(n) +v(n) ()

The impulse response h(n, «,w, 1) is assumed to be non-
stationary, i.e., it depends on the time index n. Additionally, it
also depends on the variable o, which is the acceleration that
acts on the sensor, the angular velocity for rotational move-
ments w, and the actual position of the sensor .

As in practice the angular velocity w and the actual po-
sition 1) is not always available, we restrict the model to the
acceleration ov. Hence, the system model equation simplifies
to

p(n) = s(n) +h'(n,a)a(n) +v(n). 3)

3. PROPOSED METHOD

The proposed approach is based on three consecutive steps:
First, the non-stationary impulse response h(n,a) is esti-
mated and the linear influence of the acceleration, which acts
on the PPG sensor, to the noise-free PPG signal is removed.
This estimation process is accomplished by an adaptive filter
that minimizes the difference between the measured PPG
and acceleration signal. Second, a signal enhancement is
performed based on the adaptive filter outputs, where non-
coherent noise components are suppressed by element—wise
multiplication of the resulting spectrograms. Finally, a heart
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rate tracker follows the most probable high energy continu-
ous line in the spectrogram. An overview of the proposed
algorithm is provided in Fig. 2.

3.1. Adaptive Filtering of PPG Signals from Accelerome-
ter Signals

In the first part, the motion artifact suppression by use of
adaptive filters is explained. First, a general topology for ar-
tifact suppression via adaptive filters is derived and the op-
timization criterion is defined. Then, the applied adaptive
NLMS filter is described.

3.1.1. General Topology

The adaptive filter minimizes the power of acceleration signal
components in the PPG signal, i.e., it maximizes the signal-
to-motion artifact ratio (SMR). Based on this approach, we
derive the difference equation

e(n) = p(n) —m(n), )

where e(n) is the error signal, p(n) is the measured PPG
signal and 7(n) is the estimated motion artifact caused by
the acceleration. The adaptive filter structure is visualized in
Fig. 1.

p(n)
\
a(n) B(n) m(n) _;CVD e(n);z $(n)

Fig. 1. Adaptive filter structure for removal of motion arti-
facts.

We can now transform (4) into vector-matrix notation and
replace the estimated motion artifact 7i2(n) by the product of
the estimated impulse response fl(n, «) and the measured ac-
celeration vector a(n):

e(n) =p(n) — flT(n, a)a(n), (5)

Here, the error signal e(n) is, in fact, an estimate of the
desired original PPG signal $(n) without motion artifacts.
In our approach, each PPG signal is combined with every
dimension of the three-axis acceleration signal, yielding six
adaptive filters that operate in parallel, see Fig. 2.

In our work, we applied different kinds of adaptive fil-
ters, such as, e.g. the Kalman filter [11, 12], the Kalman
smoother [7], the least mean square (LMS) [8, 13], the nor-
malized least mean square (NLMS) filter [7], or the adap-
tive step-size least mean squares (AS-LMS) filter [14]. The
Kalman filter achieved similar results as the NLMS filter but
required more than double of the computational time. The
standard formulation of the Kalman smoother can be used
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Fig. 2. Overview of the proposed algorithm with I = 2 PPG signals and N = 3 acceleration signals, which results in /N = 6
adaptive filters. The inputs of the adaptive filters are bandpass (BP) filtered and downsampled by a factor D to reduce computa-
tional cost. The weighted combination is performed on the spectrograms which are efficiently computed by means of the FFT.
Based on the combination of the spectrograms, the heart rate can be estimated and tracked in the final step. In this figure, the

time and frequency indices are left out for the sake of clarity.

only after data acquisition is complete but not for real-time
processing. Based on the normalization, the step-size value
w € [0,1] within the NLMS filter can be formulated much
easier compared to the LMS filter. Finally, due to the low
computational complexity O (N) and the requirement of a
fast adaptive algorithm for real-time purposes, we recom-
mend the use of the NLMS and only report the results for this
filter due to page restrictions.

3.1.2. Normalized Least Mean Square (NLMS) Filter

The objective of the LMS filter minimize the mean square
error min E[|e(n)|?]. For a better control of the step-size i,
we compute the filter weights of the NLMS filter as follows:

1
Wa(n)e(n) (6)

h(n+1) =h(n,a) +
The value § = 107'2 is added in practice for numerical
stability reasons.

3.2. Signal Enhancement by Combination

The adaptive filtering provides estimates §;(n), i =1,...,6
of the desired original PPG signal without motion artifacts.
At this point, the estimates need to be combined in a reason-
able manner. This is done in order to remove all incoherent
components, such as, e.g. the high noise floor, and enhance
coherent components like those related to the heart rate.

For all six estimates of s(n), the time-varying spectrum is
estimated via the short-term Fourier transform (STFT). The
combination of the six time-varying spectra is done by a com-
putationally efficient and simple element—wise multiplication
of the spectrograms. This multiplication leads to a lower
noise floor level which is useful in order to extract the heart
rate signal. We can formulate this as

(N
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where Secom (n, f) is the combined spectrogram dependent on
the time index n and the frequency band index f. The variable
Si(n, f) corresponds to the channel 4.

3.3. Heart Rate Tracking
The last step in the proposed algorithm is the actual heart rate
(HR) estimation. This estimation is based on a extremely sim-
ple tracker that follows the most probable high energy con-
tinuous line in the enhanced spectrogram Scom(m f). The
frequency region, in which the highest energy is to be found,
lies in an interval of +-14 beats per minute (BPM) of the pre-
ceding HR estimate. As an initialization for the first few esti-
mates, simply the highest energy in the frequency region from
40 — 170 BPM is selected.

To prevent the tracking algorithm from losing the HR over
a long time, the ratio between the highest peak in the observed
frequency region and the highest peak in an interval of 100
BPM of the preceding HR estimate is calculated and com-
pared to a predefined threshold 7',

max{gcom(na AflOO)}
max{Scom (1, Af1a)}

If the threshold 7" is exceeded, for example, if the al-
gorithm had mistakenly tracked a non-stationary high power
transient noise that lost its energy, it switches to the alterna-
tive high energy value in the frequency neighborhood.

®)

4. RESULTS

We use a real data set consisting of 12 measurements that
was recorded by [10]. Each data set consists of a two-channel
PPG signal, a three-axis acceleration signal, and an ECG sig-
nal. The sampling rate for all signals is 125 Hz. The 12 male
subjects are between 18 and 35 years old. The PPG signals
were recorded from a subject’s wrist using a pulse oximeter
with green LED. The ECG was measured to determine the
ground truth heart rate and we used the ground truth provided
by the authors of [10] to evaluate our approach.
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S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 | Mean AAE
Proposed Approach 240 121 120 122 134 144 1.16 104 1.18 | 533 218 152 1.77
(SSA+FOCUSS+Vrf) [10] || 2.29 219 2.00 215 201 276 | 1.67 193 186 | 470 172 2.84 2.34

Table 1. Average absolute error (AAE) over all 12 subjects in BPM. The second row was obtained by [10] using singular
spectrum analysis (SSA), focal underdetermined system solver (FOCUSS), and verification (Vrf).

The proposed algorithm was constructed to work on slid-
ing windows of 8 seconds and provides a new HR estimate
every other second. This way, it is able to monitor the HR
in real-time which is a common requirement for many ap-
plications, such as, e.g. for athletes to adjust their training
program during the exercise.

The bandpass filter has a lower and upper center fre-
quency of 0.6875 Hz resp. 10 Hz, the downsampling rate D
equals 6, the NLMS filter order is set to 9, the step size y is
chosen to be 0.1, the frequency resolution of the FFT is fixed
to 4096 bins and the ratio threshold for the HR tracking is
determined to be 7' = 5,000.

The performance measurement index is the average abso-
lute error (AAE), which is defined as

N
1 . .
AAE = ¥ Zl |BPM.q (i) — BPMire (7)), 9)

where N is the total number of estimates, BPMy () denotes
the ground truth of the HR value in the i-th time window
in terms of BPM, and BPMc(¢) denotes the corresponding
estimate in BPM.

Table 1 lists the AAE for each subject’s recording and
gives an overall average AAE. Except for Subject 1, 10,
and 11, the proposed approach outperforms the reference
method on each subject. Furthermore we achieve better av-
erage performance. The average AAE across the 12 subjects
is 1.77 £+ 1.20 BPM (mean + standard deviation). The best
estimate is obtained for Subject 8 with 1.04 BPM on average
and the worst estimate is, similar to [10], for Subject 10 with
5.33 BPM on average. In Table 1, the green color indicates
the best and the red color the worst result of each method.
The best and worst result of our method including the ground
truth is examplarily shown in Fig. 3 superimposed on the
combined spectrogram Seopm (1, f).

5. CONCLUSION

A new, effective heart rate estimator based on PPG and ac-
celeration signals that is able to monitor a subject’s heart rate
in real-time during physical exercise, was presented. Our ap-
proach is based on adaptive filters, which reduce the influence
of motion artifacts in the measured PPG signals. To enhance
the spectral quality, we combined the outputs of the adap-
tive filters. Finally, a constrained heart rate tracker follows
the most probable high energy continuous line in the spec-
trogram. Real data experiments showed an increased accu-
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Fig. 3. Heart rate estimates depicted together with the ground
truth on the combined spectrogram of all six adaptive filter
outputs for (a) the best result and (b) the worst result.
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racy compared to a recently published reference. Future and
ongoing work include a real-time spectral quality assessment
based weighted combination of the six spectrograms, which
is able to account for different spectral qualities in the chan-
nels. Other tracking approaches, such as, e.g. a tracker based
on autocorrelation or a multi-peak tracker, that takes the har-
monic structure of the PPG into account, could also be con-
sidered and applied to the signals. However, the results that
we present here were achieved by the simple outlined tracking
algorithm described above.
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