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ABSTRACT
Knowledge on how a number of loudspeakers are positioned
relative to a listening position can be used to enhance the lis-
tening experience. Usually, these loudspeaker positions are
estimated using calibration signals, either audible or psycho-
acoustically hidden inside the desired audio signal. In this
paper, we propose to use the desired audio signal instead.
Specifically, we treat the case of estimating the distance be-
tween two loudspeakers playing back a stereo music or speech
signal. In this connection, we develop a real-time maximum
likelihood estimator and demonstrate that it has a variance in
the millimetre range in a real environment for even a modest
sampling frequency.

Index Terms— Loudspeaker localisation, distance esti-
mation, time-of-arrival estimation

1. INTRODUCTION

The distribution of a number of loudspeakers relative to the
listening position has a large impact on the listening experi-
ence and the perceived spaciousness of sound [1–3]. Often,
however, the loudspeakers are not placed in the optimal posi-
tion since other interior design considerations take higher pri-
ority or the desired listening position moves. This can to some
extent be compensated for by preprocessing the loudspeaker
signals. However, in order to apply the correct preprocess-
ing, the location of the loudspeakers relative to the listening
position must be known.

Existing approaches to solving this loudspeaker localisa-
tion problem can roughly be dichotomised into two groups.
In the first group, synthetic test signals such as sinusoidal
sweeps or maximum length sequences (MLS) are used as cal-
ibration signals [4–6]. This has the advantage of high esti-
mation accuracy, but also requires the user to actively start
the calibration sequence every time, e.g, the listening posi-
tion or the loudspeaker locations change. This is solved in
the second group of methods by adding a calibration signal
to the desired audio signal [7, 8]. The calibration signal is
shaped psycho-acoustically and hidden inside the audio sig-
nal so that it is inaudible to the listener. Consequently, the

energy of the calibration signal is low compared to the energy
of the audio signal. This is a problem since the audio signal is
considered to be "noise" in the source localisation algorithm,
and this affects the estimation accuracy [8].

So why not use the audio signal for source localisation?
To our surprise, we have not been able to find any previous
work on this. We believe that the main reason for this is that
audio signals are much more difficult to work with since they
are heavily correlated in both time and in between the loud-
speaker channels and have an unknown frequency content.
Consequently, it is hard to estimate impulse responses, and
the simple cross-correlation methods for loudspeaker local-
isation fail. Synthetic calibration signals, on the other hand,
can be designed to be uncorrelated and to have a desirable fre-
quency content. Thus, the simple cross-correlation methods
and impulse response peak picking can be used to compute
the distances and/or direction of arrivals (DOAs) between the
loudspeakers and/or to the listening position.

In this paper, we take a first step in the direction of loud-
speaker localisation using only the desired audio signals.
Specifically, we focus on the case where we have to estimate
the distance between two loudspeakers playing back a stereo
music signal. Distances between all the loudspeaker pairs in a
set of loudspeakers can be used to form an Euclidean distance
matrix to which the positions of the loudspeakers can be fitted
using, e.g, the multidimensional scaling (MDS) algorithm [9]
or the algorithm by Crocco et al. [10]. The latter method
has the advantage that the loudspeakers and microphones do
not have to be co-located. Here, however, we assume that
a microphone is mounted on every loudspeaker, which we
will refer to as a transceiver, so that they are approximately
co-located. This assumption is used in the proposed estimator
of the distance to take into account that both transceivers in
a transceiver pair should measure the same distance. This in-
creases the robustness of the estimator. Inspired by the recent
work in [11], we also formulate the signal model so that the
estimator produces estimates from a continuous set without
resorting to any heuristic interpolation method. This is in
contrast to many of the proposed localisation methods whose
resolution is bounded to the sampling grid (see, e.g., [4,5,7]).
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2. ESTIMATING THE DISTANCE BETWEEN TWO
TRANSCEIVERS

As alluded to in the introduction, we focus on estimating the
distance between two transceivers playing back stereo mu-
sic or a speech signal. In this paper, a transceiver is a loud-
speaker with a microphone mounted close to the diaphragm
of the loudspeaker. The developed estimator is not only lim-
ited in scope to this special case, but can also be used for the
problem where the direct distance should be estimated from a
loudspeaker to a microphone, e.g, placed at the listening po-
sition, and for the problem where the distance to a reflector
should be estimated using just one transceiver. These special
cases are obtained by appropriately selecting the source and
sensor signals.

2.1. The Signal Model

We assume that the two transceivers record N samples each,
and we model these as

x1(n) = q11(n) + q21(n) + e1(n) (1)
x2(n) = q22(n) + q12(n) + e2(n) (2)

where ei(n) and qki(n) are the noise recorded by transceiver
i and the signal recorded by transceiver i from transceiver
k, respectively. Thus, qii(n) is the part of the microphone
signal xi(n) which originates from transceiver i. This signal
is not of interest as it does not contain any information on the
distance between the transceivers, and we therefore wish to
suppress it as much as possible. To do that, we model qii(n)
as

qii(n) =

M−1∑
m=0

hi(m)si(n−m) (3)

where si(n) and hi(m) are a source signal sample of trans-
ceiver i and an FIR filter coefficient of the ithM -length trans-
ceiver filter, respectively. Thus, a transceiver filter models the
acoustic impulse response between the loudspeaker and mi-
crophone on a transceiver. We assume that the loudspeak-
ers and microphones are all connected to the same system so
that the source signals are known. On the other hand, the
transceiver filters are assumed unknown since these might be
slowly time-varying due to, e.g., temperature changes. These
transceiver filters are very important in order to attenuate the
contribution of si(n) in xi(n) since only qki(n) for k 6= i con-
tains information about the distance between the transceivers.
Therefore, qki(n) is modelled explicitly in terms of the de-
lay parameter (in samples) η ∈ [M,K] with M < K < N ,
which we are interested in estimating, and the gain β ≥ 0 as

qki(n) = βsk(n− η), for i 6= k . (4)

This model describes the sound propagation of the direct path.
Note that the reverberation is later modelled as part of the
noise (see Sec. 2.1.2) and that β and η are not indexed since
we assume that they are the same for both q12(n) and q21(n).

Moreover, the delay η is related to the distance between the
loudspeakers d via d = ηc/fs where c is the speed of sound
and fs the sampling frequency. If we define the vectors

xi =
[
xi(0) xi(1) · · · xi(N − 1)

]T
(5)

x =
[
xT1 xT2

]T
(6)

si(η) =
[
si(−η) si(1− η) · · · si(N − 1− η)

]T
(7)

ei =
[
ei(0) ei(1) · · · ei(N − 1)

]T
(8)

e =
[
eT1 eT2

]T
(9)

hi =
[
hi(0) hi(1) · · · hi(M − 1)

]T
, (10)

it follows that the signal model can be written as

x =

[
B1 0 s2(η)
0 B2 s1(η)

]h1

h2

β

+ e (11)

= Bh+ s(η)β + e (12)

where the definitions of B, h, and s(η) are obvious and

Bi =
[
si(0) si(1) · · · si(M − 1)

]
(13)

is a convolution matrix. To summarise, we have so far as-
sumed a signal model which is linear in the unknown trans-
ceiver filters h1 and h2 and the gain β and is non-linear in
the delay η. The main reason for using this signal model is
that, as we show in Sec. 2.2, the linear parameters can eas-
ily be separated out of the problem leaving us with the single
non-linear parameter η which we are interested in estimat-
ing. Before deriving the estimator for η, however, we make a
number of assumptions about the source signal and the noise
which enables sub-sample delay estimation accuracy, drasti-
cally reduces the computational complexity, and increases the
robustness of the resulting estimator.

2.1.1. The Source Signals

Most scientific literature on time of arrival (TOA), time dif-
ference of arrival (TDOA), and DOA estimation formulates
these problems in the frequency domain since a delay in the
time domain corresponds to a phase-shift in the frequency do-
main. Consequently, the delay parameter can be separated out
analytically from the source signal and modelled as a contin-
uous parameter. For finite length signals, however, a delay
in the time domain only corresponds to a phase shift in the
frequency domain if the signal is periodic with fundamental
frequency 2π/N radians per sample (or an integer multiple
thereof) [11]. Since we here consider very long segments
compared to the delay, we wish to estimate, we do not make
an inappropriate error by assuming that the source signals are
periodic. Thus, we have that

si(η) = ZAid(η) (14)
Bi = ZAiF (15)
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where we have defined

z(ω) =
[
1 exp(jω) · · · exp(jω(N − 1))

]T
(16)

Z =
[
z(−2πL/N) · · · 1 · · · z(2πL/N)

]
(17)

d(η) =
[
exp(j2πηL/N) · · · 1 · · · exp(−j2πηL/N)

]T
(18)

Ai = N−1 diag(ZHsi(0)) (19)

F =
[
d(0) d(1) · · · d(M − 1)

]
. (20)

Note that the time indices are symmetric around zero from
−L to L where L = bN/2c. This is necessary to ensure
that the decomposition of si(η) is real-valued for non-integer
values of η [11].

2.1.2. The Noise

We assume that the noise is Gaussian and consists of two parts

ei = wi + vi (21)

where the first part is due to reverberation and the second part
is measurement noise. These two are assumed to be indepen-
dent, and the measurement noise is modelled as white Gaus-
sian noise with variance σ2. We model wi as a delayed and
weighted sum of the two source signals so that

wi =

M∑
m=2

(s1(η1i,m)β1i,m + s2(η2i,m)β2i,m) (22)

where η1i,m and β1i,m are the m’th reflection and gain from
transceiver 1 to transceiver i. The summation index is run-
ning from m = 2 to indicate that the first component is al-
ready included in the model via (4). We now make the critical
assumption that all reflections are uncorrelated so that

E[wiw
H
k ] ≈ 0 (23)

E[wiw
H
i ] ≈

M∑
m=2

E
[
s1(η1i,m)β2

1i,msH1 (η1i,m)

+ s2(η2i,m)β2
2i,msH2 (η2i,m)

]
(24)

≈ γσ2Z(A1A
H
1 +A2A

H
2 )ZH (25)

where γ is an uninteresting scale parameter and the last ex-
pression follows from the decomposition in (14) and from

E

[
M∑
m=2

d(ηi,m)β2
i,mdH(ηi,m)

]
≈ γσ2IN . (26)

These assumptions are hard to justify theoretically, but have
been demonstrated to work well in practice [12, 13]. Under
these assumptions, the covariance matrix of the noise can be
written as

C = E[eeH ] ≈
[
C1 0
0 C2

]
(27)

Ci ≈ γσ2
[
Z(A1A

H
1 +A2A

H
2 )ZH + γ−1IN

]
. (28)

Applying the matrix inversion lemma to C−1i , we obtain that

C−1i = σ−2
[
IN −N−1ZZH + (N2γ)−1ZQZH

]
(29)

where we have defined

Q =
(
A1A

H
1 +A2A

H
2 + (Nγ)−1IN

)−1
. (30)

With these, we obtain
ZHC−1i = (σ2Nγ)−1QZH (31)

ZHC−1i Z = (σ2γ)−1Q (32)
which proves to be useful later.

2.2. A Maximum Likelihood Estimator

The log-likelihood function pertaining to the model in (12) is
given by

l(h1,h2, β, η, σ
2, γ) = −1

2

[
ln |C|+

(x−Bh− s(η)β)HC−1(x−Bh− s(η)β)
]

(33)

where all terms which do not depend on the unknown param-
eters have been ignored. Whereas the linear parameters h and
β and the noise variance σ2 can be separated out of the likeli-
hood function, the scale factor γ cannot. Since γ is only a nui-
sance parameter, we assume that it is known and large. That
is, we assume that the reverberation energy is much larger
than that of the measurement noise. We have found that this
works very well in practice. As seen from (30), this means
that (Nγ)−1 acts as a regularisation parameter.

To derive the maximum likelihood (ML) estimator for the
delay η, we perform the following steps. Given η and β, the
ML-estimate of the transceiver filters is given by

ĥ =
(
BHC−1B

)−1
BHC−1(x− s(η)β) , (34)

Inserting this estimate back into the log-likelihood function
in (33) and only keeping the terms which depend on η and β
give the optimisation problem1

β̂, η̂ = argmin
β≥0,η∈[M,K]

(x− s(η)β)HC−1R(x− s(η)β) (35)

where R = diag(R1,R2) is a block diagonal matrix with
Ri = IN − Bi(B

H
i C−1i Bi)

−1BH
i C−1i . Despite the non-

negative constraint on the gain β, it can still be separated
out of the optimisation problem by solving a KKT system of
equations. The final 1D optimisation problem for the delay is

η̂ = argmax
η∈[M,K]

max(J(η), 0) (36)

where the cost function is given by

J(η) =
sH2 (η)C−11 R1x1 + sH1 (η)C−12 R2x2√

sH2 (η)C−11 R1s2(η) + sH1 (η)C−12 R2s1(η)
.

This cost function is highly non-linear in η so we propose to
find η̂ using a two step procedure. First, a coarse value for
η̂ is computed from a search over J(η) on a uniform grid.
Second, the coarse estimate is refined using a line searching
method such as a Fibonacci search [14, pp. 85–92].

1Note that RHC−1R = C−1R.
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Fig. 1. A picture of the stereo setup.

Type WGN Music Speech

Simulation 0.28 0.78 0.18
Measurement 0.61 1.42 1.13

Table 1. Standard deviation in mm of the estimated distance
for three source signals in a simulated and real environment.

2.2.1. Efficient Implementation

The cost function J(η) can be evaluated efficiently by us-
ing the intermediate results in (14), (15), (31), and (32), and
by computing the economy size singular value decomposition
(SVD) Q1/2AiF = U iSiV i so that

ZHC−1i Ri = (σ2Nγ)−1Q1/2(IN −U iU
H
i )Q1/2ZH .

These results allow us to write the cost function as

J(η) =
dH(η) (y1 + y2)√

2L+ 1− dH(η) (K1 +K2)d(η)
(37)

where (for k 6= i)

yi = AH
k Q1/2(IN −U iU

H
i )Q1/2ZHxi (38)

Ki = AH
i Q1/2U iU

H
i Q1/2Ai . (39)

Note that ZHxi and all elements of the diagonal matrices
Ai and Q can be computed using an FFT algorithm. More-
over, dH(η)Kid(η) is approximately zero and depends only
weakly on η since d(η) is asymptotically orthogonal to the
columns of F for η ≥ M . Therefore, we have in practice
found that only the numerator in the cost function is suffi-
cient to find the coarse estimate of η. On the Fourier grid, the
numerator can be computed using a single FFT whereas the
denominator requires 2M FFTs.

3. RESULTS

In this section, we demonstrate the applicability of the pro-
posed method in both a simulated and a real environment.
The former is necessary to be able to compare the produced

estimates to a ground truth which is unknown and not well
defined in a real environment. Specifically, we evaluated the
estimator for three different source signals: (1) a white Gaus-
sian noise signal, (2) a stereo music signal (track 61 on the
EBU SQAM cd [15]), and (3) a stereo speech signal (track 4
on the Archimedes CD [16]). All signals were played back
and recorded at a sampling rate of 44.1 kHz. The source
signals to the loudspeakers were also recorded to remove
internal delays in the PC and the sound card. Data frames
of four seconds were obtained with a 75 % of overlap be-
tween the successive frames. These data were down-sampled
by a factor of four to 11025 Hz since the 3” loudspeakers
used in the measurements and shown in Fig. 1 have a very
non-linear response at the higher frequencies. A MATLAB
implementation of the proposed algorithm can process this
amount of data in real-time on a standard desktop PC. For
this sampling frequency and a speed of sound of 343 m/s,
the sampling grid corresponds to a resolution of 3.1 cm. The
code for running the simulation and making the measure-
ments is available from http://kom.aau.dk/~jkn/
publications/publications.php.

Fig. 2 shows an excerpt of the results of the simulation
where the sources were assumed to be point sources and artifi-
cial reverberation [17] was added with a reverberation time of
0.5 seconds. From the figure and Table 1, we see that we got
sub-millimetre accuracy for all source signals. From Fig. 3
and Table 1, we see that the variation of the estimates in-
creased in the real environment despite that the loudspeakers
were closer together. The main reason for this is that loud-
speakers are not omnidirectional point sources. Instead, es-
pecially the higher frequencies are attenuated from one loud-
speaker to the other when the loudspeakers are configured in
a stereo setup as in Fig. 1, i.e., they are not pointed towards
each other. Moreover, the acoustic centre of the loudspeaker
is typically in front of the loudspeaker and frequency depen-
dent [18].

Although not shown here, outliers in the estimated dis-
tances occur occasionally. These happen typically in very
silent parts of the music/speech and can be removed by using
a sound activity detector or by post-processing the computed
estimates using a smoothing algorithm. However, even with-
out these heuristics, we are able to estimate the transceiver
distance to a millimetre precision for even a modest sampling
frequency.

4. CONCLUSION

We have here taken a first step in the direction of using music
or speech signals for the localisation of a number of loud-
speakers. Specifically, we have considered the simplest case
where we have to estimate the distance between two loud-
speakers, each equipped with a single microphone. We de-
rived an ML estimator for this problem and demonstrated
that it could be used to obtain real-time distance estimates to
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Fig. 2. The estimated distance for three source signals in a simulated environment.
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Fig. 3. The estimated distance for three source signals in a real environment.

within an accuracy of one millimetre for even a low sampling
frequency. Only frame-by-frame processing was considered
in this paper, but outliers can be removed and higher accuracy
can be achieved by smoothing the computed estimates.
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