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ABSTRACT

In this paper, a new robust and low computationally algorithm
is proposed for broadband geolocalization. Recent work have
demonstrated the superiority of the geolocalization in 1-step
over the 2-steps algorithms. However this superiority is ob-
tained at the price of a bandwidth slicing which is unfor-
tunately limited for computational reasons and leads to an
asymptotic bias due to the residual broadband effect. This pa-
per we propose an alternative approach fully exploiting the to-
tal bandwidth and consequently suppressing the slicing draw-
backs. The proposed method is named TARGET and exploits
the rank deficiency of a temporal shift dependent covariance
matrix after a multichannel synchronization. Our analysis
and simulations prove the performance advantage of proposed
method over recently introduced ones.

Index Terms— joint AoA and TDoA estimation; broad-
band geolocalization; direct geolocalization

1. INTRODUCTION

The context of this work is the blind geolocalization of mul-
tiple radiating sources with multiple separated antenna arrays
(also called stations). For example, these sources stem from
telecommunication transmissions such as GSM, 4G, etc. Tra-
ditional technics [1] rely on a two steps strategy where mea-
surements such as Angle of Arrival (AoA), Time Differential
of Arrival (TDoA), Frequency Differential of Arrival (FDoA),
etc. are obtained from each antenna array in a first step and
combined in a second step to estimate the position of the
sources. The sources impinging on each station are assumed
to be narrowband and far-field. For instance, the AoAs of
sources are estimated by each station independently in the
first step and, in a second step, the locations of sources are
computed from the AoAs (i.e. by triangulation) [1].
However, such 2-steps methods present drawbacks [3] and
are generally less efficient than the direct algorithms (1-step
methods) [5]-[10]. The most efficient direct geolocalization
algorithms use the array composed of all the stations (global
array) to directly estimate the sources locations [3], [8], [9]
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and [10]. Unfortunately, the sources are generally wideband
with respect to that global array [11]-[13]. To overcome this
difficulty, recent algorithms such as DPD [8] for Direct Posi-
tion Determination, and more recently LOST-FIND [10] for
LOcalization by Space-Time with Frequency Identification in
Narrowband Decomposition, struggle against the broadband
effect in their own way. They are based on a bandwidth de-
composition of the received signal allowing the use of high
resolution narrowband algorithms on the resulting narrow-
band signals. Although these algorithms are more efficient
than the conventional 2-steps methods in a wide scope of sce-
narios, the technical implementation constraints (cost calcu-
lation, number of snapshot, efc.) lead to a residual broadband
effect which was studied for the DPD [12] algorithm and an
other 1-step algorithm named LOST [9] for LOcalization by
Space-Time in [13].

The purpose of this paper is to propose a new broadband
approach. This new algorithm is named TARGET for Time
and Angle Retrieval for Geolocation Estimation Technic and
is based on a completely different strategy. Indeed, TARGET
strategy does not counteract the broadband effect (unlike all
the 1-step algorithms working on the global array previously
cited), but composes with it. TARGET exploits the rank defi-
ciency of a temporal shift dependent covariance matrix after
a multichannel synchronization, which allows a joint estima-
tion of AoA and TDoA.

In this paper, for sake of simplicity we will consider that
the system is composed of two antenna arrays. However, the
TARGET algorithm is also applicable for more than 2 sta-
tions.

Notations: A or (a;;) 7 V(I,J) € N2 is a ma-
trix of dimension I x .J, aor (a;),«;<; VI € N, is a column
vector of dimension I, I; is the identity matrix of dimension
I, a or A is a scalar, ()H is the Hermitian of a matrix or a
vector, (-)7 is the transpose of a matrix or vector, (-)* is the
conjugate of a scalar, E[-] is mathematical expectation, [a, b]
is the set defined by {z € Z : a < x < b,V(a,b) € Z*}, for
all commutative ring or semiring K we have K, = K\{0}
and K} ={z € K: 0 < R{z} < +o0}.
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2. ASSUMPTIONS AND MODEL

2.1. Signal and system modeling

The global geolocalization system is composed of two remote
stations located at pp, and py, in a Cartesian coordinate. Each
station is composed of M; and M, sensors respectively where
M = M + M, is the number of sensors in the global system.
All the stations have the same reception bandwidth B and are
perfectly synchronized in time. In this paper, the number )
of sources is assumed to be known. The observation vector
of the I-th station is x;(¢) whose components z!,, (t) for m €
[1, M;] and ! € {1, 2} are the complex envelopes of the signal
received on the [-th antenna. Assuming a Line of Sight (LoS)
propagation, we have:

Q
Zpl,qal (0:1(Pq)) 8¢ (t = Ti(Pg)) +1u(t) (1)

q=1

= Alﬂlsl(t) + ny (t) (2)

Xl(t)

where s,(t) is the complex envelope of the ¢-th source at loca-
tion pg and s;(t) = (sq(t — 71(Pq))),<,<(- The sources are
statistically independent and have a bandwidth B, such that
(maxgeq,qp By < B). The additional noise n; (t) is spatially
white and independent between the stations. The [-th station
steering vector a,; (6;(p)) is noted a;(p) in the remainder of
the paper and A; = [a;(py), ..., a(Pg)]. The parameters,
Plq> 01(Pg) and 7;(py) are the complex attenuation, the AcA
and the Time of Arrival (ToA) of the g-th source arriving on
the [-th station respectively. Let us note the diagonal matrix
Qras Y = (05.0P10)1<(g,j)<q 4 ATi;(P) = 7;(P) —7i(P)
the TDoAs of a source of location p.

2.2. Problem formulation

The direct geolocalization algorithms [8]-[10] use the global
array on which the associated observation vector is:

x(t) = [ (0,5 ()] 3

Such the global observation is generally broadband because
|sq(t — T1(Pg))| # |54(t — T2(Pg))] in the general case, [11]-
[13]. More precisely, the narrowband hypothesis is verified
on the global array if and only if:

qgﬁi)é]] |AT12(Pg) X Bg| < 1 “
The DPD, LOST and LOST-FIND algorithms cope with the
broadband effect in two different ways. The DPD approach
decomposes the signal into K regular narrowband signals of
bandwidth £ with a filters bank. The LOST and LOST-FIND
approaches are similar to the DPD one in the time domain
thanks to the use of a space-time observation with K tempo-
ral shifts x (¢t — kT, ) of the observation x(¢). These algorithms
then make use of conventional narrowband algorithms such as
MUSIC [2] on the resulting narrowband signals. On the one
hand, if K is not large enough the estimation of the sources
location is biased [12], [13]. On another hand, the computa-
tional complexity increases with K.

3. NEW APPROACH: TARGET

In order to overcome the limitations of DPD, LOST and
LOST-FIND, we propose in this paper a broadband algorithm
based on a new observation of the signals x; (¢) and x5(¢).
According to Eq.(1), x;(¢) and x2(t — 7) are temporally syn-
chronized with respect to the g-th source for 7 = Am12(py)-
This is the reason why we consider the following observations
instead of Eq.(3):

x(t,r) = [} 0,55 (- 7] ©

where the observation of the second station is X,(t — 7)
instead of x,(t). Using the algebraic properties of the covari-
ance matrix of the multiple observations x(¢, 7), the purpose
is the joint estimation of the AoAs (01(pgq),62(p4)) and
TDoA (AT12(p,)) of each source. It is also useful to note
that the values 7 of the observations x(¢,7) are bounded.
Indeed, thanks to the triangle inequality we have:

— |pb1 — pb2| (6)

|7-| < Tmax
C

where c is the speed of light in vacuum.

3.1. Spectral behavior of the new covariance matrix

We will study in this part the algebraic properties of the co-
variance matrix formed by the observation Eq.(5). Indeed, the
TARGET algorithm will exploit the rank deficiency of this co-
variance matrix after a broadband multichannel synchroniza-
tion. According to Eq.(1), the observation x(¢, 7) is:

Q
x(t,7) = > _ U (pg, pg)sq (t,7) +n(t, 7) %)

q=1

T
where p; = [p1,4, p2,4]"

U (py, po) = (pl,qa1 (gl (Pq)) s (%2 (pq))> , 8)
_ 5q(1)
so(6:7) = Lq(t + ATi2(pg) — 7)} ®

andn(t,7) = [n] (t),nd(t — 7)] T In presence of Q broad-
band signals and according to Eq.(7), the observation x (¢, 7)
is in the general case a mixing of 2() equivalent signals if
T # ATi2(pg). However, if 7 = Aria(pg) = Ay, the ob-
servation x (¢, T) becomes:

Q
x(t, Atg) = ugsq(t) + Z U (p;, pi)s; (¢, Arq) +
J#q
n(t,Ary)  (10)

where u; = U (pg, pg) x 1and 1 = [1, 1"
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The TARGET approach exploits the rank deficiency of the
covariance matrix of x(¢, A7,). More precisely:

Rx(7) = E [x(t,T)xH(t,T)] (11)

2Q if 7 # A1y

. 12
2Q -1 ifr = A7,

rank (Rx(7) — R,) = {

where

G%IM1 0 ) 13)

R,=E [n(t, T)nH(taT)] = ( 0 o021,

Thus, the g-th source in the observation x (¢, A7) is tempo-
rally synchronized according to Eq.(10) and Eq.(12). The ob-
servation x(t, A7, ) is consequently a mixing of 2¢) —1 equiv-
alent signals.

The estimation of the 0% and o5 needs at least one sensor
per antenna array. Therefore, the identifiability of the sources
number () of the system is:

Q < min { M1, M>} (14)

with M; # 0. This is the same as for the identifiability
of the conventional triangulation algorithm. However if we
reasonably consider a “good” SNR, we can say that o7 =
03 = ewithe — 0. Let A\ (1) > Aa(7) -+ > Xag(7) >

Aog+1(T) = -+ = Am(7) = e be the eigenvalues of the
matrix Rx(7) — €I ranked in decreasing order, we have:
Q<M _Miti s

This means that, in the case of a “good” SNR (e.g. 10dB or
more), TARGET releases the identifiability initial conditions
and permits to be more flexible with the sensors number of
each antenna array.

Thus, a first approach to estimate the TDoAs AT, of the
sources is searching the zeros of the criterion A2g(7) where
|7| < Tmae according to Eq.(6). However, the computation
cost of Ao (7) is high and the criterion does not exploit the
sources direction of arrival on each station. Thus, in the fol-
lowing sections we propose an alternative to these problems.

3.2. Low computation cost TDoA estimator

To understand of the temporal synchronization functioning of
the TARGET algorithm, we propose here to study this syn-
chronization, resulting in a new TDoA estimator. We will use
these results in the next section.

Assuming that E [n(¢, 7)n” (¢, 7)] = R, the covariance
matrix of Eq.(11) can be rewritten as:

Rx(7) =Rx(7) + Rn (16)
with
ot o R R12(T)
Rx(T) - <R{‘12(7_) R22 > (17)

and V(l,v) € {1,2}2

R, (r) = {E [t —T)xi (t —7)] — 0PIy, ifl=1v

E [x:(t)xi (t — 7)] otherwise (18

To simplify the mathematical manipulations we will write in
the remainder of this paper R (7) = Rg;(—7). The noise
variances o2 and o3 can be estimated from an eigenvalues
decomposition of Ry (7). According to Eq.(2), the matrix
Ry, (1) is:

Ry (1) = AjS;, (1)QT ALY (19)

where S;,,(7) = E [s(¢)s!! (t — 7)] are diagonal matrices.

Let Rlll/ ? be the M; x Q whitening inverse matrix of I-th
station defined from the eigenvalue decomposition of R;; as:

R,/ =EA;” 20)

where the columns of the M; x @ matrix E; are composed
by the eigenvectors associated to the nonzero eigenvalues of
R;; and the diagonal matrix A; is composed by the associated
eigenvalues. Then, the M x M matrix Ry (7) can be reduced
into the following 2Q) x 2() covariance matrix of the whitened
observations:

Ruw(r) = WRy(r)W" (21)
RY2)" 0

W = ( ”) N 22)
o (R

where AT is the Moore-Penrose pseudoinverse of A such that
At = (AHA)_1 A The matrix Ry, (7) is then:

U G A I
Ri(r) = (R}/Q)+Rlv(7) (R}J{ﬁ)w (24)

V(l,v) € {1,2}? and [ # v. It can be shown that the ma-
trix Ry (7) has at least one null eigenvalue if and only if
Ry (7)v = 0, where v = v vl "is the eigenvector pro-
jecting the matrix onto the null space. After resolution of this
matrix system, one has:

vF (IQ ~ Ruu(6s x T)Ru(& % r)) vi =0 (25
viiGi(r)vi = 0 (26)

with & = (—1)". Thanks to Rayleigh’s quotient properties
[14] and according to Eq.(6), the optimum value of TDoA is
given by:

qu = mTin )\min {él(’r)} (27)

where Apin {A} is the smallest eigenvalue of A.

We can do here a useful comparison between this method
and conventional TDoA estimation methods which consist in
measuring the cross-correlation between one and only one
sensor of each station. Indeed, if we take M7 = My = 1
then we can observe that the TDoA estimator of Eq.(27) is
identical to the usually used one:

2
|712(7)] ) (28)

ATy = min (1 — 77"11(0)7“22(0)

2663



23rd European Signal Processing Conference (EUSIPCO)

where, according to Part 2.1, 711, o2 and rqo are the intra-
station and inter-station correlation:

rp(7) =E [xll (t)zy*(t — 7')] (29)

3.3. A new AoA-TDoA joint estimator

In this section a joint AoA-TDoA estimator is derived from

the algebraic properties of the matrices Gy (1) at Eq.(26). The
matrix of interest is more precisely the following M; x M;
matrix F;(7). According to Eq.(24) and Eq.(26), F;(7) is:

+H - H
Fi(r) = (R/?) Gur) (R)/?) (30)
= IL - R}Ru(& x RLRu(& x7) (31
where IT; = E;E} is the projector onto signal subspace of

R ;. The highest eigenvalues of the matrix F;(7) are the same
than the matrix Gy(7), and the smallest are equal to zero.

To guarantee that the eigenvalues of él(r) are the smallest
eigenvalues of F;(7), we add F;(7) to the projector onto or-
thogonal signal subspace:

Gi(r) = Fi(r)+10 (32)
= Iun, — RiRu(éo x DRLRu(E x ) (33)

Then, according to Eq.(19), the matrix Rl—; is:

Ri = A (@) s'o2Ar 6y
In the following, the algebraic structure of G;(7) is analyzed
in order to establish the TARGET criterion. According to

Eq.(19), Eq.(33) and Eq.(34), we have:

1
Zi(r)A

Gi(r) = Ly, — A (AT AY) (35)
(7)) = 8, (0)S10 (&0 X 7)S0u (0)Swi(& x 7)  (36)
where 33;(7) is a diagonal matrix of components:
|rq (1 — A1g) |?
b)) = 37
(=), =" or o0

where 74(7) = I [s4(t)s5(t — 7)], such that 0 < (Zu(1)) 4.4
< 1 and reaches the upper bound for (3;(A7y)), . In addi-
tion, the g-th column of A; is a;(p,) such thata (p,)A; = 1,
where the vector 1, is the g-th column of the identity matrix
I, and ay(py) = ILia(p,). According to Eq.(35), we
obtain:

a)" (01)Gi(7)a(619)

I (01g,7) = afl (6ig)ai(614) o
‘rq(T — ATq)|2>

_ (. lra(r=Am)? 39

( |r4(0)]2 >

where A1, = ATia(pg) and 0;; = 6;(pg). It is important
to note that the angle 6; depends on the TDoA 7. Indeed the
angle domain is conditioned by 7 as for a fixed 7 the whole
angle set of the [-th station is not reachable. According to

Eq.(38), J1y (014, A1y) = 0and 0 < Jp, (6;,7) < 1. Thus, a
first joint AoA-TDoA estimator of TARGET is:

(010, A%,) = min Jr,(01,7) (40)

The source location py is then estimated from (64, A7,) for
q € [1,Q] from the equations A7, = ATi2(p,) and 6;, =
01(py)- The criterion Eq.(38) only depends on the AoA of the
[-th station 6; and the TDoA 7. The exploitation of the AoAs
on both stations leads to the following TARGET criterion:

JTl (017 T) + JT2 (027 T)
2

Jrarcer(61,02,7) = (41)
where JTARGET(qu,Ggq,ATq) = 0 for 7 = ATlg(pq),
61 = 61(pq) and 6 = 62(p,). As the AoAs and TDoA
depend on a location p, one could define a function such that
01(p) = U (02(p), AT12(p)). Thus, the implementation of
TARGET can be written as:

(020, 8%,) = min Jranapr(V(6:.7).007)  @2)
2,T

where we recall that 65 is conditioned by 7 and according to

Eq.(6) T is bounded.

4. SIMULATIONS

In this part we compare the TARGET algorithm to DPD,
LOST, LOST-FIND, the classical triangulation [1] (AoA/Ao0A)
and the localization in 2-steps combining the AoA of one sta-
tion and the TDoA with 1 sensor of each station as described
in Eq.(28) [1] (AoA/TDoA). We will consider two received
stations. In a Cartesian coordinate system, the first one is
located at (-200m,0), and the second one at (+200m,0). Both
received arrays are composed of six sensors where five are in
a circular formation around a sixth in the center. The array
radius is 0.8m, they have a received bandwidth of 2MHz and
all sources have the same bandwidth. We consider K = 5
temporal shifts for the space-time processing (LOST and
LOST-FIND) and K = 5 decompositions of the stations
bandwidth for DPD.

First of all, we compare the performance of the TARGET
TDoA estimator of Eq.(27) and the traditional one described
in Eq.(28). For this we consider a two sources case where
the first source is located at (+50m,+100m) and the second at
(-50m,+100m). One observe the RMSE performance of the
TDoA estimate of the first source on Fig.1 as a function of
the SNR. For the traditional TDoA estimator, the propagation
time between the sources (= 330ns) is higher than the tempo-
ral resolution limit (= 250ns) but smaller than the limit from
which the estimator is not biased anymore (= 500ns). There-
fore it is biased and much less efficient compared to the esti-
mated TDoA resulting from TARGET. We clearly see that the
performance of the TARGET TDoA estimator is better and
converges very quickly to the theoretical values of TDoA.

Then, we study the TARGET algorithm’s performance
given in Eq.(42). We consider in a first time a single source
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Fig. 1. Classic TDoA versus TARGET TDoA.

case. The source is located at (0,+5m). One could note that
such a scenario is very severe for algorithms which only ex-
ploit the AoA as their performances will be strongly deterio-
rated. In Fig.2, we plot the RMSE of the estimated source po-
sition as a function of the SNR. We observe that, for the two
algorithms which do not exploit the TDoA (i.e. AoA/AoA
and LOST), the performance is poor. We also observe that in
the context of a low SNR, TARGET has the lowest RMSE.
Globally, TARGET, DPD and LOST-FIND algorithms have
good performance.

10 : . :
: : : DPD
8 R N ssessscnes oo AR \ ............ wesessssssss 5 LOST H
— : FIND
E BPC e NN
= —%— TARGET
O N NG T AcVARA ||
o
D B T e
0
5 0 5 10 15 20 25 30
SNR (dB)
Fig. 2. One source at position (0,4+5m).
30 ; ; .
: : DPD :
4 : ; i| —e—LosT
= 20NN EEP VOPROOS: . FIND 4
£ ) | —¥—TARGET
& ; || —— AoAAOA :
§ 10N\ e e\ | T*— AoATDoA [ ...} eeeerenes
0 | 1 1 = =
5 0 5 10 15 20 25 30

SNR (dB)
Fig. 3. Two sources of positions (+140m,+5m), (+150,-5m),
estimation of the first source position.

In Fig.3 we consider a two sources case where the two
sources are very more closely spaced than previously. We
position the first source at (+140m,+5m) and the second at
(+150m,-5m). The two sources are located very close to the
axis formed by the two stations (which is always a compli-
cated context to estimate the position with only the AoAs
parameters) and are very close to each other with respect to
the system dimension. Furthermore, the sources are shifted
away from the center of the arrays to reveal the bias due to
the residual broadband effect defined in [12] and [13]. We
plot the RMSE of the estimate of the first source position as
a function of the SNR. The AoA/TDoA algorithm malfunc-
tions due to the lack of temporal resolution of the TDoA es-
timation (the TDoA estimator of Eq.(28) does not distinguish
the two sources). We can observe that both algorithms only

exploiting the AoA are in difficulty and that 1-step methods
(DPD, LOST and LOST-FIND algorithms) are biased. As
the TARGET algorithm is an algorithm “naturally” operating
with broadband signals, it is not biased and has the best per-
formance.

5. CONCLUSION

A new algorithm TARGET was proposed for blind geolocal-
ization. This algorithm is designed to operate in a broadband
context (broadband signals and remote stations) and simulta-
neously exploits the TDoA and AoA of the sources. This new
algorithm fully exploits the broadband context unlike the re-
cent 1-step algorithms such as DPD, LOST and LOST-FIND.
We observed that it has no bias due to the residual broadband
effect and the performance of TARGET are good, even in un-
favorable contexts for 1-step methods previously mentioned.
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