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ABSTRACT

This communication addresses a new problem which is the

Non-Unitary Joint Zero-Block Diagonalization of a given

set of complex matrices. This problem can occur in fields

of applications such as blind separation of convolutive mix-

tures of sources and generalizes the non unitary Joint Zero-

Diagonalization problem.

We present a new method based on the Conjugate Gradient

algorithm. Our algorithm uses a numerical diagram of opti-

mization which requires the calculation of the complex gra-

dient matrix. The main advantages of the proposed method

stem from the conjugate gradient properties: it is fast, stable

and robust. Computer simulations are provided in order to

illustrate the good behavior of the proposed method in dif-

ferent contexts. Two cases are studied: in the first scenario,

a set of exactly zero-block-diagonal matrices are considered,

then these matrices are progressively perturbed by an additive

gaussian noise.

Index Terms— Joint zero-block diagonalization, matrix

decompositions, conjugate gradient algorithm, linear convo-

lutive mixtures.

1. INTRODUCTION

In the recent years, the problem of the joint decomposition of

matrices (or tensors) sets has often arisen in the signal pro-

cessing field, especially in blind source separation and array

processing applications. One of the first considered prob-

lems was the Joint Diagonalization (JD) of a given matrix set

under the unitary constraint, leading to the nowadays well-

known JADE (Joint Approximate Diagonalization of Eigen-

matrices) [1] and SOBI (Second Order Blind Identification)

[2] algorithms. The following works have addressed either the

problem of the JD of tensors [3][4] or the problem of JD of

matrices but discarding the unitary constraint [5][6][7]. This

first particular type of matrices decompositions is useful both

in sources localization and direction finding problems and in

blind sources separation of instantaneous mixtures.

A second type of matrices decompositions, namely the joint

block-diagonalization (JBD), is encountered both in the wide-

band sources localization in the presence of a correlated noise

and in the blind separation of convolutive mixtures (or multi-

dimensional deconvolution) problems. Several algorithms

have been developed, under different assumptions about the

considered matrix set (the matrices can be either positive def-

inite or Hermitian) and about the block-diagonalizer (it is as-

sumed unitary [8] or not [9][10] [11][12]). A third type of ma-

trices decompositions, namely the joint zero-diagonalization

(JZD), has proven to be useful in blind source separation,

telecommunication and cryptography. The first suggested

algorithms operated under the unitary constraint [13], since

they were applied after a classical pre-whitening stage. But

such a preliminary pre-whitening step establishes a bound

with regard to the best reachable performances in the context

of BSS that is the reason why the unitary constraint was soon

discarded, leading to several other solutions [14][15][16]. In

this communication, our purpose is to generalize the non uni-

tary joint zero diagonalization approach suggested in [17][18]

to the non-unitary joint zero-block diagonalization (JZBD)

of several complex (not necessarily Hermitian) matrices (the

zero-block-diagonalizer is not assumed unitary). It involves

the choice of a well-chosen cost function and the calculation

of quantities such as the complex gradient matrix. The main

advantage of this approach remains its rather generic aspect

since it encompasses the aforementioned JZD problem.

2. PROBLEM STATEMENT

2.1. Non-unitary joint zero-block diagonalization

The problem of the non-unitary joint zero-block diagonal-

ization is stated in the following way. We consider a set

N of Nm (Nm ∈ N∗) square matrices Xi ∈ CM×M . For

i ∈ {1, . . . , Nm}, these matrices all admit the following
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decomposition form: Xi = AZiA
H , where (·)H stands

for the transpose conjugate operator and the matrices Zi =














011 Zi,12 . . . Zi,1r

Zi,21 022
. . . Zi,2r

...
. . .

. . .
...

Zi,r1 . . .
... 0rr















, for all i ∈ {1, . . . , Nm}

are (N ×N) zero-block diagonal matrices with r the number

of considered blocks (r ∈ N∗), Zi,kl, for all k, l ∈ {1, . . . , r}
are nk × nl matrices so that n1 + . . . + nr = N where 0kk

denotes the nk × nk square null matrix. A is a M × N

(M ≥ N ) full rank matrix and the N × M matrix B is its

pseudo-inverse (or generalized Moore-Penrose inverse). The

set of the Nm square matrices Zi ∈ CN×N is denoted by Z .

The block sizes nj for all j = 1, . . . , r are assumed known.

The NU− JZBD problem consists of estimating A and the

zero-block-diagonal matrices belonging to Z from only the

matrix set N . To tackle that problem, we propose, here, to

consider the following cost function:

CZBD(B) =

Nm
∑

i=1

‖Bdiag(n){BXiB
H}‖2F , (1)

where the matrix operator Bdiag(n){.} is defined as follows:

Bdiag(n){X} =









X11 012 . . . 01r

021 X22
. . . 02r

...
. . .

. . .
...

0r1 0r2 . . . Xrr









, (2)

where X is a N ×N square matrix whose block components

Xij for all i, j = 1, . . . , r are ni × nj matrices (and n1 +
. . .+ nr = N ). Finally, we denote by n = (n1, n2, . . . , nr).
Using the cost function given Eq. (1) is rather advantageous

since one single matrix is finally involved (direct estimation

of the joint zero-block-diagonalizer matrix).

3. AN ALGORITHM TO SOLVE THE NU-JZBD

The cost function given in Eq. (1) has to be minimized to
estimate the zero-block-diagonalizer matrix B. To that aim,
we suggest a new algorithm based on the conjugate gradient
approach [19]. This iterative optimization method is well-
known for its robustness and effectiveness. It has been widely
used in various fields (e.g. neural networks [20], array pro-
cessing [21] or blind sources separation [22]). But first, the

complex gradient matrix G = ∇aCZBD (B) = 2∂CZBD(B)
∂B∗

or its vectorization denoted by g = vec (∇aCZBD (B)) has
to be calculated. The operator vec(.) stacks the columns of
a matrix into a vector. This calculation is performed in Ap-
pendix A. It is established that ∇aCZBD(B) is equal to:

2

Nm
∑

i=1

[

Bdiag(n){BXiB
H}BX

H
i +

(

Bdiag(n){BXiB
H}

)H
BXi

]

.

3.1. Updating rule of the conjugate gradient algorithm

The matrix B is re-evaluated at each iteration m. Thus, it

is denoted by B(m) or by b(m) when the vector b(m) =

vec
(

B(m)
)

is considered instead of the matrix. The CG al-

gorithm (with restarts) used to estimate b thus reads:

Step 1. Given b(0), compute g(0) and set d(0) = −g(0)

Step 2. For m = 0, 1, . . . , n− 1
{

b(m+1) = b(m) − µ(m)d
(m)
B ,

d
(m+1)
B = −g(m+1) + β(m)d

(m)
B .

(3)

Step 3. If m = n − 1 replace b(0) by b(n) and go back to
Step 1 (i.e. restart).

µ is a positive small factor called the step-size and dB is the

direction of search. We show in Section 3.2 how the opti-

mal step-size µopt can be calculated at each iteration. In exact

line search methods, several expressions of β have been sug-

gested among which are the Fletcher-Reeves (βFR), the Polak-

Ribière (βPR) [23][24] and the Dai-Yuan (βDY) formula [25]:

β
(m+1)
FR = (g(m+1))Hg(m+1)

(g(m))Hg(m) , (4)

β
(m+1)
PR = (g(m+1)−g(m))Hg(m+1)

(g(m))Hg(m) , (5)

β
(m+1)
DY = (g(m+1))Hg(m+1)

(d
(m)
B

)H(g(m+1)−g(m))
. (6)

The restarting aspect is important for the convergence of the

algorithm since in general one cannot guarantee that the di-

rections d(k) are effectively descent directions. But since a

pure steepest descent step is taken at each restart by setting

d
(m)
B = −g(m) the local convergence is assured.

3.2. Exact Line Search: seek of the optimal step-size

The optimal step size, say µopt, is used to decrease the total

number of iterations needed to reach convergence. It mini-

mizes the polynomial CZBD (P) where P = B(m) − µD
(m)
B

and d
(m)
B = vec

(

D
(m)
B

)

. In our case, this quantity is a 4th

order polynomial, and its derivative a 3rd order polynomial.

They are respectively given by:

CZBD (B− µDB) = a0 + a1µ+ a2µ
2 + a3µ

3 + a4µ
4,(7)

∂CZBD(B−µDB)
∂µ

= 4a4µ
3 + 3a3µ

2 + 2a2µ+ a1, (8)

where the five coefficients ai for i = 0, . . . , 4 are equal to (see
Appendix B):

a0 =

Nm
∑

i=1

tr
{

K
H
3 Bdiag(n){K3}

}

,

a1 = −

Nm
∑

i=1

tr
{

K1Bdiag(n){K3}+K
H
3 K2

}

,

a2 =

Nm
∑

i=1

tr
{

K
H
0 Bdiag(n){K3}+K

H
3 Bdiag(n){K0}+K1K2

}

,

a3 = −

Nm
∑

i=1

tr
{

K
H
0 K2 +K1Bdiag(n){K0}

}

,

a4 =

Nm
∑

i=1

tr
{

K
H
0 Bdiag(n){K0}

}

,
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where:

K0 = D
(m)
B Xi(D

(m)
B )H ,

K1 = D
(m)
B XH

i BH +BXH
i (D

(m)
B )H ,

K2 = Bdiag(n){BXi(D
(m)
B )H +D

(m)
B XiB

H},

K3 = BXiB
H .

The optimal step-size µopt corresponds to the root of (8)

which minimizes (7).

3.3. Algorithm

The non-unitary JZBD algorithm (denoted by JZBDCG) is

summarized below:

Data: Nm square matrices X1,X2, . . . ,XNm , stopping

criterion ǫ, step-size µ, max. number of iterations

Mmax

Result: Estimation of joint zero block diagonalizer B

initialize: B(0); D(0); m = 0;

repeat

if m mod M0 = 0 then
restart

else

Calculate optimal step-size µ
(m)
opt

Compute gradient matrix ∇aCZBD(B(m+1))
Compute matrix B

(m+1)

Compute β
(m)
PR

Compute the search direction D
(m+1)
B

m = m+ 1;
end

until ((|B(m+1) −B
(m)| ≤ ǫ) or (m ≥ Mmax));

4. COMPUTER SIMULATIONS

We present simulations to illustrate the effectiveness of the
suggested algorithm. We consider a set Z of Nm = 5 (resp.
20 and 100) matrices, randomly chosen according to a Gaus-
sian law of mean 0 and variance 1. First, these matrices are
considered as exactly zero block-diagonal, then a random
matrix of noise is added (drawn from a gaussian law of mean
0 and variance σ2

b ). The signal to noise ratio is defined as

SNR = 10 log( 1
σ2
b

). To measure the quality of the estimation,

the ensuing error index (which is an extension of the one
introduced in [4]) is used:

Iconv(G) =
1

r(r − 1)





r
∑

i=1





r
∑

j=1

‖(G)i,j‖
2
F

max
ℓ

‖(G)i,ℓ‖
2
F

− 1





+
r

∑

j=1





r
∑

i=1

‖(G)i,j‖
2
F

max
ℓ

‖(G)ℓ,j‖
2
F

− 1







 ,

where (G)i,j for all i, j ∈ {1, . . . , r} is the (i, j)-th block

matrix of G = B̂A. The best results are obtained when the

error index Iconv(·) is close to 0 in a linear scale (−∞ in a

logarithmic scale). All the displayed results have been aver-

aged over 100 Monte-Carlo trials. For all simulations we have

considered a size r of blocks equal to 4.

First, we plot on the Fig.1 the evolution of the performance

of the suggested algorithm versus the iterations for different

sizes of the matrix sets (Nm = 5, 20 and 100). In this ex-

ample, we consider the noiseless case where SNR = 100 dB.

Whereas, on the Fig. 2, the same study is performed in a noisy

context (SNR = 25 dB). In both cases, the algorithm is ini-

tialized thanks to the generalized eigenvalue decomposition

[10].
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Fig. 1. Evolution of the error index Iconv(G) versus the number of

iterations in the noiseless case (SNR = 100 dB) and for Nm =5, 20

and 100 matrices. We consider the case of r = 4 blocks.
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Fig. 2. Evolution of the error index Iconv(G) versus the number of

iterations in the noisy case (SNR = 25 dB) and for Nm =5, 20 and

100 matrices. We consider the case of r = 4 blocks.

In the noiseless case, we can observe the good stability and

convergence of the JZBDCG algorithm for Nm = 5 (resp.

20 and 100), since it reaches -100 dB (resp. -108 dB and -115

dB). In a noisy context, we observe the same kind of behavior,

except that the performance are deteriorated and bounded (-

37 dB instead of -115 dB).

Finally, on Fig.3, we emphasize the influence of the SNR.

We display the evolution of the error index versus the number

of matrices Nm. Different values of the SNR are considered

(25 dB, 40 dB and 100 dB). After that, we show the influ-

ence of the size Nm of the matrix set to be joint zero block-

diagonalized. We display the evolution of the error index ver-

sus the SNR for different sizes of the matrix sets (Nm = 5,

20 and 100). These charts illustrate the behavior of the pro-

posed algorithm i.e. an increase of the performance when

bigger subsets of matrices are considered or when the SNR is
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improved.
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Fig. 3. Evolution of the error index Iconv(G) versus the number,

Nm, of matrices that are used for SNR = 25 dB, 40 dB and 100 dB.

We consider the case of r = 4 blocks.
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Fig. 4. Evolution of the error index Iconv(G) versus the SNR for

different sizes of the matrix sets Nm = 5, 20 and 100. We consider

the case of r = 4 blocks.

5. CONCLUSION

In this communication, we have suggested a newNU− JZBD

algorithm called JZBDCG. It relies on a conjugate gradi-

ent optimization scheme which requires the calculation of

the complex gradient matrix. The main advantage of the

JZBDCG algorithm is its more general aspect as well as the

fact that it leads to rather good performances even in dif-

ficult situations (noise and/or few matrices to be joint zero

block-diagonalized). Further works will consist of showing

the interest of this algorithm in a true blind multi-dimensional

deconvolution context (blind separation of convolutive mix-

tures of sources).

APPENDIX

Considering three (M ×M) square matrices D1, D2 and D3

and two rectangular matrices D4 (M ×N ) and D5 (N ×M )
and a square N × N matrix D6, let tr {·}, d {·}, vec {·},
Bdiag(n){·} respectively denote the trace operator, the differ-

ential operator, the vec-operator, the block-diagonal operator
defined in Eq. (2) and TBDiag = diag{vec(BDiag{1N})},

1N is the N ×N matrix whose components are all ones. Our
developments are based on the ensuing properties:
P1. ‖Bdiag(n){D1}‖

2
F = tr{(Bdiag(n){D1})

HBdiag(n){D1}}

= tr{DH
1 Bdiag(n){D1}}.

P2. tr {D1} = tr
{

D
T
1

}

.
P3. tr {D1 +D2} = tr {D1}+ tr {D2}.
P4. tr {D1D2D3} = tr {D3D1D2} = tr {D2D3D1} ⇒

tr {D1D2} = tr {D2D1}.
P

′

4. tr {D4D5} = tr {D5D4}.
P5. tr

{

D
H
1 D2

}

= (vec {D1})
H
vec {D2}.

P6. vec
{

Bdiag(n){D6}
}

= TBDiagvec {D6}.

P7. d
{

D
H
1

}

= (d {D1})
H

.
P8. d {D∗

1} = (d {D1})
∗

.
P9. d {D1D2} = d {D1}D2 +D1d {D2}.
P10. d {D1 +D2} = d {D1}+ d {D2}.
P11. d {tr {D1}} = tr {d {D1}}.
P12. d {vec {D1}} = vec {d {D1}}.
P13. if f(Z,Z∗) = tr{DT

1 Z+Z
H
D2} then d {f(Z,Z∗)} =

tr
{

D
T
1 dZ+D

T
2 dZ

∗
}

⇒ ∂f

∂Z
= D1 and ∂f

∂Z∗
= D2.

P14. (D1D2)
H = D

H
2 D

H
1 .

P15. (D1 +D2)
H =

(

D
H
1 +D

H
2

)

.
P16. Bdiag(n){D1 +D2} = Bdiag(n){D1}+ Bdiag(n){D2}.

A. Calculation of the complex gradient matrix of

the cost function CZBD(B)
Using the property P1, P3, P9, P10 and P11, the differential
of cost function is rewritten as:

d{CZBD(B)} =

Nm
∑

i=1

tr
{

d{(BXiB
H)HBdiag(n){BXiB

H}}
}

,

= F(B) + G(B), (9)

where, F(B) =
∑Nm

i=1 tr
{

d
{

(BXiB
H)H

}

Bdiag(n){BXiB
H}

}

,

and G(B) =
∑Nm

i=1 tr
{

(BXiB
H)Hd

{

Bdiag(n){BXiB
H}

}}

.

After using the properties P2, P3, P4, P′
4, P7, P9, P8, P12

F(B) and G(B) in Eq. (9) and using the property P13 we ob-

tain
∂CZBD(B)

∂B
and

∂CZBD(B)
∂B∗

respectively equal as follows:

Nm
∑

i=1

(

Bdiag(n){BXiB
H}

)T
B

∗

X
∗

i +

Nm
∑

i=1

(

Bdiag(n){BXiB
H}

)

∗

B
∗

X
T
i ,

Nm
∑

i=1

(

Bdiag(n){BXiB
H
}
)

BX
H
i +

Nm
∑

i=1

(

Bdiag(n){BXiB
H
}
)H

BXi.

It finally leads to the result stated in Section 3.

B. Coefficients of the 4th-degree polynomial

Using the properties P14 and P15, the cost function can be
expressed as:

CZBD(B − µD
(m)
B

) =

Nm
∑

i=1

∣

∣

∣

∣

∣

∣

∣

∣

Bdiag(n)

{

µ
2

(

D
(m)
B

Xi

(

D
(m)
B

)H
)

− µ

(

BXi

(

D
(m)
B

)H
+ D

(m)
B

XiB
H

)

+ BXiB
H

}∣

∣

∣

∣

∣

∣

∣

∣

2

F

. (10)

From the properties P1, P14,P15 and P16 when introducing
the four following matrices K0, K1 , K2 and K3:

K0 = D
(m)
B

Xi

(

D
(m)
B

)H
, (11)
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K1 = D
(m)
B

X
H
i B

H + BX
H
i

(

D
(m)
B

)H
, (12)

K2 = Bdiag(n){BXi

(

D
(m)
B

)H
+ D

(m)
B

XiB
H}, (13)

K3 = BXiB
H
. (14)

We finally find that:

CBD

(

B − µD
(m)
B

)

=

Nm
∑

i=1

tr
{

(K3)
H

Bdiag(n){K3}
}

− µ

Nm
∑

i=1

tr
{

K1Bdiag(n){K3} + (K3)
H

K2

}

+ µ
2

Nm
∑

i=1

tr
{

K
H
0 Bdiag(n){K3} + (K3)

H
Bdiag(n){K0} + K1K2}

}

− µ
3

Nm
∑

i=1

tr
{

(K0)
H

K2 + K1Bdiag(n){K0}
}

+ µ
4

Nm
∑

i=1

tr
{

(K0)
H

Bdiag(n){K0}
}

(15)

It finally leads to the results stated in Section 3.2.
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