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ABSTRACT

Automatic emotion recognition from speech has been focused
mainly on identifying categorical or static affect states, but the
spectrum of human emotion is continuous and time-varying.
In this paper, we present a recognition system for dynamic
speech emotion based on state-space models (SSMs). The
prediction of the unknown emotion trajectory in the affect
space spanned by Arousal, Valence, and Dominance (A-V-D)
descriptors is cast as a time series filtering task. The state-
space models we investigated include a standard linear model
(Kalman filter) as well as novel non-linear, non-parametric
Gaussian Processes (GP) based SSM. We use the AVEC 2014
database for evaluation, which provides ground truth A-V-D
labels which allows state and measurement functions to be
learned separately simplifying the model training. For the
filtering with GP SSM, we used two approximation methods:
a recently proposed analytic method and Particle filter. All
models were evaluated in terms of average Pearson correla-
tion R and root mean square error (RMSE). The results show
that using the same feature vectors, the GP SSMs achieve
twice higher correlation and twice smaller RMSE than a
Kalman filter.

Index Terms— Emotion recognition, Affect recognition,
Kalman filter, Gaussian Process state-space model

1. INTRODUCTION

Automatic recognition of human emotions expressed by
speech or body language is an important task since it can
not only facilitate development of new human centric ap-
plications, but also help diagnose and prevent mental health
disorders such as depression which exhibit specific emotional
patterns. Most of the research on speech emotion recognition
in recent years has been focused on categorical emotion clas-
sification. Categories such as happiness anger, and fear are
commonly used to label speech utterances and build classi-
fiers. Another way of representing emotions is by the affect
space. This space usually has two or three dimensions named
Arousal, Valence, and Dominance. A point in this space rep-
resents a particular emotion. Emotions varying in time form
a trajectory in it. The task of dynamic emotion recognition is
to infer this trajectory from the speech signal.
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There are just a few studies on this task one of which
is the study of Wollmer et al. [1]. It uses long-short term
RNN to capture the time dependencies in emotion trajecto-
ries. Recently, a series of annual Audio-Visual Emotion Chal-
lenge (AVEC) and workshops has been under way, which
has advanced the research in this area by providing common
benchmark test sets. Some of the techniques presented at
these workshops include multi-stage approach based on hid-
den Markov models [2], multi-scale dynamic cues [3], and
Partial Least Square Regression [4].

Our approach is to consider emotion trajectories as time
series and apply methods from time series analysis. One
widely used method is Bayesian filtering based on state-
space models (SSMs). A classical example is the Kalman
filter [5]. It has been successfully used for temporal music
emotion recognition [6]. However, the Kalman filter is a
linear system and has its limitations. There exist non-linear
SSMs such as the Extended Kalman filter (EKF) and Un-
scented Kalman filter (UKF), but they put certain constraints
on the SSM state and measurement functions. A better solu-
tion is to use Gaussian Processes (GPs) which are non-linear,
non-parametric models [7]. They have been successfully
applied in various tasks including speech and music process-
ing [8-10]. Previously, we have also used GPs for static
music emotion recognition [11]. A number of GP based
state-space models (GP-SSM) have been proposed recently.
GP-BayesFilters [12] use GPs as non-linear functions and
derive GP-Particle filter, GP-EKF, and GP-UKF algorithms
using Monte Carlo sampling. In [13, 14], an analytic filtering
approximation algorithm is presented, but lacks an analytic
approach to GP-SSM parameter learning. An attempt to de-
rive such an algorithm is done in [15], which, however, has
some stability problems. A Particle Markov Chain Monte
Carlo (PMCMC) training method is described in [16], but the
MC based learning is notoriously slow.

In this study, we use the AVEC 2014 database [17] which
provides ground truth labels for the A-V-D affect vectors and
this makes possible to train the state and measurement GP
functions of the state-space model independently. For the
filtering with GP-SSMs we adopted the analytic algorithm
from [14] as well as a GP Particle filter algorithm similar to
the one in [12].
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2. STATE-SPACE MODELS

We consider state-space models defined by

x, € RY, (1)
yt € Rea (2)

. = flxio1) +ue,
Yt g(xe) + vy

where f() and g() are unknown functions governing tem-
poral state dynamics and state-to-measurement mapping re-
spectively. System and observation noises, u; ~ N(0,X,,)
and v; ~ N(0,3,), are both Gaussian with uncorrelated
dimensions. Figure 1 shows the SSM as a graphical model
with probabilistic dependencies between variables. The ini-
tial state xq is assumed to have known Gaussian distribution
p(xo) = N(p§,X%). For a sequence of T measurements,
the tasks of filtering and smoothing are to find approximations
to the posterior distributions p(x¢|y1.:) and p(x¢|y1.7), t =
1,...,7. When these approximations are given by Gaus-
sian distributions the corresponding models are referred to as
Gaussian filters or smoothers. In this case, as shown in [18],
the filtering distribution can be approximated as

p<mt‘ylt> ~ N(wtlutx7 2?)7 (3)
W= S ), @
Bpo= B -IPNENTIEDT.6)

where p1;7"* and 3;*"** are the parameters of the Gaussian
approximation to the predictive distribution p(@¢|y1..—1) ~
N (@] ;" 2777°). Generally, the means and covariance
matrices required in Eqgs. (4) and (5) cannot be computed an-
alytically except when f() and ¢() are linear as in the Kalman
filter case.

p (Xt|xt—l)

X, > X —»

p(ylx,)

Fig. 1. Graphical representation of a state-space model. States
x; are continuous latent variables and measurements y; are
observable vectors. Arrows show the probabilistic relation-
ship between variables.

When we apply a SSM for continuous speech emotion
recognition, states x; would represent the unknown af-
fect vector, i.e., Arousal-Valence-Dominance values, and
y; would correspond to feature vectors extracted from the
speech signal. When observations of the state variable are
available during training, f() and g() can be learned indepen-
dently which makes the SSM parameter estimation simpler.
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3. KALMAN FILTER

As mentioned above, when state dynamics and measurement
functions are linear, such as f(z) = Fx and g(x) = Gz
with matrix parameters F' and G, an analytic solution can be
easily obtained. The means and covariances from Eqs.(4) and
(5) are computed as

p = Fpgg, 6)
st = FRY L FT 4%, (7)
ni = Gp" ®)
» = G"'GT + %, )
=Y = mpreGar (10)

In general, when there are no ground truth observations of the
latent state variables, estimation of F' and G as well as the
noise variances 3, and 32, can be done using likelihood max-
imization via expectation-maximization algorithm [5]. How-
ever, when they are available, simple multivariate linear re-
gression can be used to obtain the necessary estimates.

4. GAUSSIAN PROCESSES SSM

Having non-linear functions f() and g() would greatly in-
crease the expressiveness of the state-space model, but intro-
duces two problems - what kind of non-linearity is suitable for
the task at hand and how to estimate the parameters. Gaussian
Processes allow eliminating the first problem and, when state
observations are available, provide solution to the second. In
GP inference, the non-linear function is marginalized out and
there is no need to define it. The GP kernel function parame-
ters can be learned using approximations and gradient descent
methods [7].

However, filtering with SSM when f() and g() are de-
scribed by GPs is not straightforward. There are just a few
studies on this problem and no common and efficient algo-
rithm exists yet. In our experiments, we adopted the solu-
tion recently proposed in [14]. It is based on analytic mo-
ment matching to derive Gaussian approximation to the filter-
ing distribution. In addition, we implemented a Particle filter
based approximation similar to the one proposed in [12].

4.1. Gaussian Process Regression

Given input training data vectors X = {x;},i = ¢,...,n
and their corresponding target values z = {z;}, a general
regression model relates them as: z; = f(x;) + €;, where
€ ~ N(0,02) and f() is an unknown non-linear function. In
GP, it is assumed that this function is normally distributed, i.e.
the vector f = [f(x1),..., f(x,)] has Gaussian distribution
f ~N(m,K), where K = {k;; = k(x;,x,)} is a kernel
covariance matrix and the mean m is often set to zero. This
assumption allows expressing in closed form the predictive
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distribution of a test target z, only in terms of training data
and the input vector x.:

P2, 2, X) N (z|me, 03), (11)
m. = kI(K+o.I)™!
02 = k(z., x.) — kL (K + 0’7 'k,

where k., = k(x., x;),i =1,...,
plexity of this operation is O(n?).

Covariance kernel parameters are learned by maximizing
the marginal likelihood p(z|X,0) = [ p(z|f)p(f|X,0)d0
w.r.t. 8 which is known as maximum hkehhood type 1I ap-
proximation.

n. The computational com-

4.2. GP-SSM analytic filter

States x; and observations y; of the GP-SSM are multi-
dimensional vectors, but the GP regression targets, as de-
scribed in Section 4.1, are scalars. A simple way to overcome
this discrepancy is to assume that the target dimensions are
independent given a test input and train a separate GP for
each dimension. Analytic approximations to the means and
variances from Eqs.(4) and (5) have been proposed in [13]
and [14]. For example, the mean of the predictive distribution
for target dimension  is calculated as'

J«pred)

7 B qt, (12)

a2 S A+ I

T —
ri =

1 xr
eXP(—§($‘i - Mt—1)T

(BP0 + M) (i — piy)),

i =1,...,n, where A = diag[i?,...,12] is a diagonal ma-
trix with the length-scales of the squared exponential kernel
function
1 _
ksp(xi,@;) = a® exp(—§(a:i —z;) Az —=;)), (13)
which represents the “distance” between a pair of vectors x;

and x ;. The other kernel parameter, o2, is called the function
variance.

4.3. GP Particle filter

In contrast to the analytic method from the previous section,
particle filtering approximates the distribution of interest
using the sequential importance re-sampling (SIR) Monte
Carlo method [19]. This method is often used in SSM when
distributions p(x¢|x:—1) and p(y:|x:) are unknown, but
probabilities can be evaluated. Central to particle filtering

!n order to save space, we do not provide all the expressions for Eqs.(4)
and (5).
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approach is the selection of the so-called proposal distribu-
tion which should approximate the importance distribution
m(xs|ei—1,y1.¢). Often, the proposal distribution is set to
p(x¢|x+—1) which can be evaluated using the GP state model.
Algorithm 1 provides the steps of the GP Particle filter. The
number of particles is set to N. It is assumed that GP pa-
rameters 8, and 6, for each target dimension are already
obtained.

Algorithm 1 GP Particle filter
Input: N, T, y1.7,05,0y, ui, 35,
I.fori=1,....N
2~ N, 55)
3. wh=1/N

4. end
5.fort=1,...,T

6.  Resample particles =} according to weights w?

7. fori=1,...,N

8. ff?72§c,t =GP_(wi_1|9x)

9. x; ~ N(ff, 2., +X,) = propagate particle i
10. g“El = GP(:ct|0 )

Output: Zi.T

= initialize particle ¢
= initialize weight ¢

1. wj=N(ylgi, =}, +%,) = update weight i
12. end

13. wt = wy/ >, wi = normalize weights

14. =) ,wix; = estimated mean of p(x|y1.;)
15. end

16. return 1.7

5. EXPERIMENTS

For our experiments we developed speech emotion recogni-
tion systems based on three SSM: Kalman filter, GP-SSM
filter and GP Particle filter. In addition, we implemented
the corresponding smoothing algorithms: RTS smoother, GP-
SSM smoother and GP Particle smoother. The main algorith-
mic difference between filtering and smoothing is an addi-
tional backward sweep over the filter output.

Each system is evaluated in terms of average Pearson cor-
relation coefficient R between each of the reference A, V, or D
sequences and its corresponding prediction averaged over all
test utterances. We have to note that for many test samples,
the correlation coefficient showed negative values resulting
in reduced total average 2 In addition to R, the root mean
square error (RMSE) is also used as an evaluation measure.
In all cases, for GP parameter training and inference we used
the GPML toolbox [20].

2 Averaged results in the next sections are not directly comparable with
the official AVEC 2014 results because the AVEC scoring technique uses
the absolute R value. This increases the average to the 0.5-0.6 range. We,
however, believe that this approach masks system errors which are the reason
for negative R values.
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5.1. Database and feature extraction

The database we used in our experiments has been released as
part of The Audio/Visual Emotion Challenge and Workshop
(AVEC 2014) [17]. It consists of recordings from 84 subjects.
There are 100 recordings for training and as many for testing.
Duration ranges from 6 to 248 seconds. Each recording is an-
notated using three affective dimensions: Arousal, Valence,
and Dominance (A-V-D) which form a basis for emotion anal-
ysis in psychology. The AVEC 2014 database includes speech
features extracted using the openSMILE toolkit [21]. The fea-
ture set consists of 32 energy and spectral related low level de-
scriptors (LLD) and 6 voicing related LLDs. These features
are aggregated in windows of 3 seconds with 1 second over-
lap and various statistics such as mean, standard deviation,
flatness, skewness, kurtosis, and functionals such as regres-
sion coefficients, local minima/maxima, etc., are calculated
for each window resulting in a 2268 dimensional feature vec-
tor.

Since the feature dimension is too high for the GP
based SSMs, we used several feature subsets. The first one,
called meansl, includes only the LLLD means. In the second
one, means2, we included means of LLD delta coefficients
(ALLDs) as well. Next, we added the standard deviation of
LLDs and ALLDs and call this set stat/. Finally, we selected
all statistical functionals for LLDs and ALLDs into a set
named stat2.

5.2. Kalman filter results

The Kalman filter based speech emotion recognition system
was evaluated using all feature sets and Table 1 summarizes
its performance together with the one using a linear Rauch-
Tung-Striebel (RTS) smoother. Results clearly show that an
increased feature vectors dimension improves the correlation
coefficient R, but also worsens the root mean square error.

Feature set Filter Smoother
Name # dims R RMSE R RMSE
meansl 38 0.0350 0.1598 0.0405 0.1668
means2 76 0.0881 0.1691 0.0960 0.1763
statl 152 0.0987 0.1802 0.1112 0.1862
stat2 456 0.1430 0.2057 0.1575 0.2059
all 2268 0.1725 0.2249 0.1591 0.1970

Table 1. Kalman filter and linear RTS smoother results.

5.3. GP-SSM filter results

Table 2 shows the performance of the GP-SSM filter and
GP-SSM smoother based systems. Results are shown only
for meansl, means2, and statl feature sets, because the other
two sets’ dimensionality imposed prohibitive memory re-
quirements. Nevertheless, even with much smaller feature
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vectors, the GP-SSM systems achieved results better than the
best of the linear SSMs in Table 1. For the same feature sets,
correlation R is two or more times higher and the RMSE is
about two times smaller.

Feature set Filter Smoother
Name # dims R RMSE R RMSE
meansl 38 0.1445 0.0850 0.0661 0.0880
means2 76 0.1895 0.0896 0.1758 0.0919
statl 152 0.1769 0.1096 0.1779 0.1108

Table 2. GP-SSM filter and GP-SSM smoother results.

5.4. GP Particle filter results

With the GP Particle filter and smoother based systems, in
addition to the squared exponential kernel, Eq.(13), we used
linear kernel ki(z;, x;) = (z]x; + 1)/l as well. Here
is a length parameter. Table 3 summarizes the results for the
means] and means?2 feature sets. Unfortunately, for other fea-
ture sets evaluation time was unreasonably long. In all cases,
we used 5000 particles for filtering and 500 for smoothing.
As these results show, GP Particle filter and smoother perform
similarly to the GP-SSM, especially when squared exponen-
tial kernel is used. The linear kernel is little bit worse in terms
of R, but still better than the Kalman filter. In terms of RMSE,
however, their performances are comparable.

Feature set Filter Smoother
Name  #dims R RMSE R RMSE
Linear covariance function
means| 38 0.1219 0.1303 0.1406 0.1403
means2 76 0.1631 0.1430 0.1598 0.1525
Squared Exponential covariance function
means1 38 0.1417 0.0850 0.1257 0.0742
means2 76 0.1642 0.0890 0.1603 0.0897

Table 3. GP Particle filter and GP Particle smoother results.

6. CONCLUSION

We have developed and investigated a dynamic speech emo-
tion recognition system using two different state-space mod-
els such as linear Kalman filter and a novel non-linear, non-
parametric Gaussian Processes-based SSM. Kalman filters
are widely used and well known SSM. On the other hand, the
GP based models are new and there are few studies focusing
on learning and inference algorithms for them. We were able
to simplify the GP-SSM learning by utilizing the AVEC 2014
database which provides ground truth labels for the latent
affect states. For the filtering and smoothing, however, there
is no common and efficient algorithm. We compared the
performance of a recently proposed analytic approximation
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based algorithm and a GP based Particle filter in terms of
Pearson correlation coefficient and root mean square error

with respect to the conventional Kalman filter.

Both GP

filtering algorithms showed about two times better results
when the same feature vectors are used. A disadvantage of
the GP-SSMs, however, is their memory and computational
complexity which is much higher.
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