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ABSTRACT
We propose the use of multivariate version of Whittle’s
methodology to estimate periodic autoregressive moving av-
erage models. In the literature, this estimator has been widely
used to deal with large data sets, since, in this context, its
performance is similar to the Gaussian maximum likelihood
estimator and the estimates are obtained much faster. Here,
the usefulness of Whittle estimator is illustrated by a Monte
Carlo simulation and by fitting the periodic autoregressive
moving average model to daily mean concentrations of par-
ticulate matter observed in Cariacica, Brazil. The results
confirm the potentiality of Whittle estimator when applied to
periodic time series.

Index Terms— Cyclostationarity, periodic stationarity,
PARMA models, Whittle estimation, particulate matter.

1. INTRODUCTION

Seasonal phenomena are frequently observed in many fields
such as hydrology, climatology, air pollution, radio astron-
omy, econometrics, communications, signal processing,
among others. A standard approach in the literature is to
fit a stationary seasonal model after removing any trend. As
pointed out by [1], this strategy can be suggested by standard
time series tools even if the true covariance structure has a
periodic (or cyclic) nonstationary behaviour. In this case,
adjusting a seasonal model is inappropriate and deteriorates
the forecast performance and this model mispecification is
not revealed by the usual residual diagnostic checking. Some
authors have proposed methods to identity hidden periodic
covariances in a signal, see e.g., [2].

Processes with periodically varying covariances are de-
nominated Periodically Correlated (PC) (also known as peri-
odically stationary or cyclostationary) and were introduced in
the seminal paper [3]. The occurrence of PC processes is cor-
roborated by real applications in many areas, for example, [4]
investigate cyclostationarity in electrical engineering and [5]
study stratospheric ozone data. See, e.g., [6] and [7] for recent
reviews on PC processes.

The simplest way to build models for PC processes is to

allow the parameters of stationary models to vary periodically
with time. In this context, the Periodic Autoregressive (PAR)
model emerges as an extension of the well-known autore-
gressive framework. The parameter estimation of PAR model
is already well documented in the literature, see e.g. [8] and
references therein. However, some data sets require large
periodic autoregressive orders to provide an adequate fit.
Thus, a more parsimonious model can be built by consid-
ering jointly Autoregressive and Moving Average (ARMA)
coefficients, which leads naturally to the periodic ARMA
(PARMA) model.

Surprisingly, even if the PARMA model is more parsimo-
nious, it has not been widely used yet in real applications. The
main reasons of this may be due to the difficulty of implemen-
tation of estimation methods and their computational efforts.
Since PC processes are nonstationary, in essence, the method-
ology of [9] seems to be a promising tool for fitting models
to PC data. However, we point out that, in general, PC pro-
cesses do not satisfy the local stationarity assumption which
is requested in [9]. On the other hand, generalizations of
stationarity-based estimation methods have been developed in
the literature for PC processes. For example, the exact Gaus-
sian PARMA likelihood is derived by [10], but the method
requires the Choleski decomposition of a matrix whose di-
mension is the number of data. This can be a serious handicap
for large data sets and [11] propose an efficient algorithm to
evaluate the Gaussian likelihood which does not require any
matrix inversion.

All the estimation methods discussed in the previous para-
graph are based on the time domain. To our knowledge, the
estimation of PARMA models in the frequency domain pro-
posed here has not been investigated yet. The advantage of
the spectral approach is to circumvent the inversion of the co-
variance matrix by using the well-known Whittle approxima-
tion. Since the publication of the seminal paper [12], Whit-
tle type estimation has been studied in many domains, see
e.g. [13], [14] and [15]. Here we introduce a Whittle estima-
tor for the parameters of a PARMA model.

The rest of the paper is organized as follows. PC pro-
cesses and PARMA models are defined in Section 2. Whit-
tle estimator is described in Section 3. Section 4 presents a
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Monte Carlo simulation study. Section 5 illustrates the use-
fulness of Whittle estimator through an application to air pol-
lution data set. Concluding remarks are given in Section 6.

2. PC PROCESSES AND PARMA MODELS

Let Z be the set of integer numbers and (Xt)t∈Z be a real
valued stochastic process satisfying E(X2

t ) < ∞ for all t ∈
Z. Let µt = E(Xt) and γt(τ) = Cov(Xt, Xt−τ ). We say
that (Xt) is PC with period T (PC-T ) if for every (t, τ) ∈ Z2,

µt+T = µt and γt+T (τ) = γt(τ), (1)

and there are no smaller values of T > 0 for which (1) hold.
This definition implies that µt and γt(τ) are periodic func-
tions in t and need to be known only for t = 1, . . . , T . If
(Xt) is PC-1 then it is weakly stationary in the usual sense.
In the following, we assume without loss of generality that
µt = 0 for all t ∈ Z.

The univariate sequence (Xt) is remarkably related by T -
blocking to the T -variate sequence (Xn) defined by X′n =
(XnT+1, . . . , XnT+T ), where X′n denotes the transpose of
Xn. In other words, Xn is the vector of all observations of
cycle n. In particular, (Xt) is PC-T if its T -vector counter-
part (Xn) is stationary in the usual (vector) sense. In addition,
the causality and invertibility of PC-T processes can be natu-
rally defined from the causality and invertibility of the vector
process (Xn). For more details, we refer to [3] and [7].

As previously mentioned, the most natural way to build
parametric models for PC-T processes is to allow periodi-
cally varying coefficients. In this context, the PARMA model
emerges as a powerful tool. A time series (Xt) satisfying
E(Xt) = 0 and E(X2

t ) < ∞ for all t ∈ Z is said to be a
PARMA(p, q) process with period T > 0 (PARMA(p, q)T ) if
it is a solution to the periodic linear difference equation

XnT+ν +

p∑
j=1

φν,jXnT+ν−j = εnT+ν +

q∑
j=1

θν,jεnT+ν−j ,

where n ∈ Z, ν = 1, . . . , T , and (εnT+ν) is a sequence of
zero mean uncorrelated random variables with E(ε2nT+ν) =
σ2
ν . The autoregressive and moving average model orders are
p and q, respectively, and φν,1, . . . , φν,p and θν,1, . . . , θν,q are
the autoregressive and moving average parameters, respec-
tively, during season ν. There is no mathematical loss of gen-
erality in assuming that p and q are constant in the season ν.
The period T is taken to be the smallest positive integer sat-
isfying the above difference equation so that its definition is
unambiguous. When T = 1, the PARMA(p, q) model corre-
sponds to the usual ARMA(p, q) model.

When (Xt) is a PARMA(p, q)T process, it is well-known
that the sequence (Xn) satisfies the VARMA difference equa-
tion ∑P

k=0 φkXn−k =
∑Q
k=0 θkεn−k, (2)

where (εn) = (εnT+1, . . . , εnT+T )′, [φk]l,m = φl,kT+l−m
and [θk]l,m = θl,kT+l−m with the conventions that φν,j =
0 when j 6∈ {0, . . . , p}, φν,0 = 1, θν,j = 0 when j 6∈
{0, . . . , q}, θν,0 = 1, for every ν = 1, . . . , T . The orders
are P = dp/T e and Q = dq/T e, wherein dxe stands for the
smallest integer greater than or equal to x. Observe that the
covariance matrix E(εnε

′
n) = Σ is diagonal with [Σ]l,l = σ2

l .
In general, φ0 and θ0 are not equal to the identity ma-

trix I. However, since φ0 and θ0 are unit lower triangular
matrices, they are invertible and (Xn) satisfies the VARMA
difference equation

Xn +
∑P
k=1 φ

∗
kXn−k = ξn +

∑Q
k=1 θ

∗
kξn−k, (3)

where φ∗k = φ−10 φk, θ∗k = φ−10 θkθ
−1
0 φ0 and ξn =

φ−10 θ0εn with Var(ξn) = Σ∗ = φ−10 θ0Σθ′0φ
−1
0

′
. Nev-

ertheless, deducing a unique representation (2) from (3) is not
always possible.

We now turn to causality (and invertibility) of PARMA
processes. Let us define, for z ∈ C, the polynomials

φ(z) =
∑P
k=0 φkz

k, θ(z) =
∑Q
k=0 θkz

k,

φ∗(z) = I +
∑P
k=1 φ

∗
kz
k, θ∗(z) = I +

∑Q
k=1 θ

∗
kz
k.

As previously mentioned, causality of (XnT+ν) and (Xn) are
equivalent and, by [16, Theorem 11.3.1], it is ensured when-
ever detφ∗(z) 6= 0 for |z| ≤ 1, or equivalently, detφ(z) 6= 0
for |z| ≤ 1. This theorem also shows that the weights of the
causal representation of (Xn) can be obtained from the power
series expansions of φ(z)−1θ(z) or φ∗(z)−1θ∗(z), depend-
ing on which white noise (εn) or (ξn) is used. The same
arguments jointly with [16, Theorem 11.3.2] show that (Xt)
is invertible when detθ(z) 6= 0 for |z| ≤ 1. In addition, the
spectral density of (Xn) is

f(ω) =
1

2π
φ∗(e−iω)

−1
θ∗(e−iω)Σ∗θ∗(e−iω)

†
φ∗(e−iω)

−1†

=
1

2π
φ(e−iω)

−1
θ(e−iω)Σθ(e−iω)

†
φ(e−iω)

−1†

According to [16, page 431], causality and invertibility do
not ensure that Σ, φ(z) and θ(z) are uniquely determined by
f . This identifiability problem results in a likelihood surface
with more than one maximum. Further restrictions have to
be imposed in order to obtain identifiable models, see [13]
and [14]. The identifiability of the parameters in the VARMA
model (2) is not easily handled, since (2) is not in the usual
form (3). We shall not pursue this topic here and will tacitly
assume that model (2) is identifiable.

3. WHITTLE ESTIMATION

Let P ⊂ R(p+q+1)T be the parameter space. Set the vectors of
AR and MA parameters of season ν as φν = (φν,1, . . . , φν,p)

′

and θν = (θν,1, . . . , θν,q)
′, respectively. Typical points of P
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are ϕ = (ϕ′φ, ϕ
′
θ, ϕ
′
σ)′, where ϕ′φ = (φ′1, . . . , φ

′
T ), ϕ′θ =

(θ′1, . . . , θ
′
T ) and ϕ′σ = (σ2

1 , . . . , σ
2
T ). We shall denote the

true parameter vector by ϕ0 ∈ P. For simplicity, assume that
a time series X = (X1, . . . , XNT )′ of lengthNT is available.

Let ΓN,ϕ be the (NT ×NT ) matrix with (l,m)th block
entry given by

(ΓN,ϕ)l,m =

∫ 2π

0

fϕ(ω)ei(m−l)ωdω, l,m = 1, . . . , N,

where we use the subscript ϕ to emphasize the dependency
of the spectral density f on the parameter vector ϕ. Note that
ΓN,ϕ0 = Cov(X,X). Consider

L̂(ϕ,X) =
1

N
log det ΓN,ϕ +

1

N
X′Γ−1N,ϕX, ϕ ∈ P,

and observe that L̂(ϕ,X) is the Gaussian loglikelihood multi-
plied by −2/N . The well-known Gaussian Maximum Likeli-
hood Estimator (MLE) over the parameter space P is defined
as

ϕ̂ = argmin
ϕ∈P

L̂(ϕ,X).

However, asymptotics for ϕ̂ do not necessarily requires that
X be Gaussian, see for example, [13].

In most cases this minimization is performed through op-
timization algorithms, which can demand high computational
effort, since a priori it is necessary to invert ΓN,ϕ. One alter-
native is to resort to exact efficient algorithms such as in [11].
However, even these tools can be troublesome for large sam-
ple sizes. Therefore, to circumvent this difficulty, we propose
to use the multivariate version of Whittle’s methodology to
approximate L̂(ϕ,X).

The discrete Fourier transform and the periodogram of
Xn, n = 1, . . . , N , at the elementary frequencies ωj = 2πj

N ,
j = 0, 1, . . . , N − 1, are defined, respectively, by

W (ωj) =

N∑
n=1

Xne
−inωj

√
2πN

and P(ωj) = W (ωj)W (ωj)
†.

We shall consider the Whittle likelihood

L̃(ϕ,X) = log det Σ∗ϕ +
1

N

N−1∑
j=0

tr{fϕ(ωj)
−1

P(ωj)}

=

T∑
ν=1

log σ2
ν +

2π

σ2
νN

N−1∑
j=0

∥∥∥(Θ(j)
ϕθ

−1
Φ(j)
ϕφ

Wj

)
ν

∥∥∥2
 , (4)

where Θ
(j)
ϕθ = θϕθ (e

−iωj ), Φ
(j)
ϕφ = φϕφ(e−iωj ) and Wj =

W (ωj). Among several Whittle-type likelihoods, L̃ is par-
ticularly interesting due to its computational advantages. The
Whittle Likelihood Estimator (WLE) over P is now defined
as ϕ̃ = argminϕ∈P L̃(ϕ,X). Differentiating (4) with respect

Cycle
Model Coef 1 2 3 4

φν,1 -1.4 -0.5 - -
θν,1 -0.5 -1.0 - -

1 σ2
ν 1 1 - -

φν,1 -1.5 -1.2 -0.8 -0.5
θν,1 -0.6 -0.8 -0.9 -1.1

2 σ2
ν 1 1 1 1

Table 1. Parameters of Models 1 and 2.

to σ2
ν and noticing that the sum in the second term of (4) is

independent of σ2
ν , the values of σ2

ν minimizing L̃(ϕ,X) are

σ̃2
ν(ϕφ, ϕθ) =

2π

N

N−1∑
j=0

∥∥∥(Θ(j)
ϕθ

−1
Φ(j)
ϕφ

Wj

)
ν

∥∥∥2 , (5)

for every ν = 1, . . . , T . Replacing (5) in (4), we see that the
values of (ϕφ, ϕθ) minimizing L̃(ϕ,X) are the values which
minimize the following “reduced” Whittle Likelihood

L̃R(ϕφ, ϕθ) =

T∑
ν=1

log σ̃2
ν(ϕφ, ϕθ).

Therefore, WLE is given by ϕ̃ = (ϕ̃′φ, ϕ̃
′
θ, ϕ̃
′
σ)′, where

(ϕ̃φ, ϕ̃θ) = argmin L̃R(ϕφ, ϕθ) and ϕ̃′σ = (σ̃2
1 , . . . , σ̃

2
T ),

wherein σ̃2
ν = σ̃2

ν(ϕ̃φ, ϕ̃θ), ν = 1, . . . , T .
Observe that (ϕ′φ, ϕ

′
θ) involves (p + q)T parameters

whereas the dimension of ϕ is (p + q + 1)T . Then minimiz-
ing L̃R is simpler than minimizing L̂. This may explain why
ϕ̃ is obtained faster than ϕ̂, even when the efficient algorithm
proposed by [11] is used (see Section 4).

4. MONTE CARLO STUDY

This section presents a Monte Carlo simulation study to inves-
tigate the finite sample performance of WLE. For comparison
purposes, we also consider the exact MLE obtained with the
algorithm in [11]. In each of the 1000 replications, a time se-
ries with N = 100 samples is generated. We consider two
different PARMA(1, 1)T models, see Table 1.

The parameters in Table 1 are chosen in order to make
Models 1 and 2 comparable in the sense that the respective
roots of det Φ(z) = 0 and det Θ(z) = 0 are almost the same
for both models. Empirical root mean squared errors (RMSE)
of both estimators are displayed in Table 2. In addition, the
mean computation time in seconds for the MLE and the WLE
are, respectively 0.995 and 0.572 for Model 1, and 5.077 and
0.635 for Model 2.

We observe from Table 2 that, for both models, MLE and
WLE present very similar performances in terms of empiri-
cal RMSE. Nevertheless, WLE runs almost twice faster than
MLE for Model 1. This difference increases dramatically for
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Model 1 Model 2
Coef ν = 1 ν = 2 ν = 1 ν = 2 ν = 3 ν = 4
φν,1 1.2 (1.3) 0.8 (0.9) 1.1 (1.1) 0.7 (0.7) 0.6 (0.6) 0.8 (0.8)
θν,1 1.2 (1.4) 1.3 (1.6) 1.1 (1.1) 0.8 (1.1) 0.8 (1.0) 1.2 (1.3)
σ2
ν 1.4 (1.8) 1.4 (1.8) 1.4 (2.0) 1.4 (1.6) 1.5 (1.5) 1.4 (1.5)

Table 2. RMSE (×10) of MLE and WLE, in parentheses, of Models 1 and 2.

higher dimensional parameter spaces such as in Model 2. In
the next section, we will see that MLE is also much more time
consuming than the WLE when real data are considered.

We point out that the same experiment was carried out for
larger sample sizes. For space limitation, these results are not
reported here, but they corroborate the fact that both estima-
tors are consistent since their empirical RMSE decrease when
N increases. Also the difference in terms of computation time
between MLE and WLE increases as N increases.

5. APPLICATION

In this section we analyze the Particulate Matter with an aero-
dynamic diameter smaller than or equal to 10 µm (PM10).
The series is observed between January 1, 2005 and De-
cember 31, 2009 at the monitoring station of Environment
and Water Resources State Institute located in Cariacica, ES,
Brazil. The first 1603 observations are used for fitting the
model and the remaining 223 observations are used for the
out-of-sample forecast study.

Since the data are collected daily, a PARMAT model with
T = 7 seems to be appropriated to fit the series. The sample
periodic autocorrelation and partial autocorrelation functions
indicate a PARMA models with orders pν = 1, 0, 3, 1, 1, 1, 1
and qν = 0, 1, 0, 1, 0, 0, 0. We set all the initial AR and MA
parameters as zero. Additionally, we observe that the choice
of the initial values for the white noise variances (σ2

1 , . . . , σ
2
T )

has an important influence on the computation time of MLE
which is not the case for WLE. Indeed, for MLE, taking as ini-
tial values (1, . . . , 1), the computation time is 294.9 seconds,
while taking (σ̂2

X , . . . , σ̂
2
X) as these initial values, where σ̂2

X

is the empirical variance of the data, gives a computation time
of 88.9 seconds. However, these different initial values do not
seem to play any substantial role in MLE estimates, even for
σ2
ν . On the other hand, since the numerical optimization is

not performed to obtain the WLE of σ2
ν , there is no need of

these initial values for calculating the WLE and the compu-
tation time is only 2.5 seconds. Therefore, WLE is at least
35 times faster than MLE. As a consequence, model selection
through information criteria like Akaike or Schwarz are un-
feasible using MLE in this application. Finally, observe that
the estimates obtained by both methods are almost the same,
see Table 4.

Residual diagnostic checking (not reported here) show
that the correlation structure is well accommodated by the

In-sample Out-of-sample
Estim. RMSE SMAPE RMSE SMAPE
MLE 10.82 9.61 11.79 10.07
WLE 10.82 9.61 11.78 10.07

Table 3. One-step-ahead forecasting performance.

model regardless of the estimation method. However, the
residuals present asymmetric behaviour which is an expected
result due to the feature of the PM10 series.

We now turn to the forecasting performance. The RMSE
and symmetric mean absolute percentage error (SMAPE)
statistics are defined by

RMSE =

√√√√NT∑
t=1

e2t
NT

, SMAPE =
100

NT

NT∑
t=1

|et|
Xt + X̂t

,

where X̂t is the forecast of Xt and et = Xt − X̂t. As we
see in Table 3, RMSE and SMAPE are almost the same when
X̂t is calculated from the model fitted by MLE and WLE, re-
spectively. Hence, both models have almost the same predic-
tive performance. Figure 1 plots the remaining 233 data and
their one-step-ahead forecasts obtained from the model fitted
by WLE. Similar results are obtained with the MLE. Visual
inspection of this figure shows that the forecasts follow satis-
factorily the actual data.

6. CONCLUSION

This paper deals with the Whittle estimator for PARMA mod-
els. The method is introduced and a Monte Carlo simulation
study is performed to evaluate its finite sample properties and
compare it with Gaussian MLE. The results show that WLE
is very competitive in terms of RMSE compared with MLE,
while the former is much more faster to calculate than the lat-
ter, mainly in large dimensional parameter spaces. We also
present an application which strongly support the usefulness
of this method to fit PARMA models to real data sets.

REFERENCES

[1] G. C. Tiao and M. R. Grupe, “Hidden periodic
autoregressive-moving average models in time series
data,” Biometrika, vol. 67, pp. 365–73, 1980.

23rd European Signal Processing Conference (EUSIPCO)

2229



2009.5 2010.0

2
0

4
0

6
0

8
0

Year

X
t

Actual values

WLE Forecasts

Fig. 1. PM10 concentrations not used in estimation and their one-step-ahead forecasts.

Estimates
ν φν,1 φν,2 φν,3 θν,1 σ2

ν

1 -0.40 (-0.39) — — — 102.05 (102.07)
2 — — — 0.41 (0.40) 104.59 (104.08)
3 -0.13 (-0.13) -0.05 (-0.05) -0.35 (-0.35) — 109.22 (108.30)
4 -0.96 (-0.94) — — -0.57 (-0.55) 135.74 (135.49)
5 -0.58 (-0.58) — — — 112.37 (111.89)
6 -0.53 (-0.53) — — — 128.02 (127.59)
7 -0.45 (-0.45) — — — 130.75 (130.37)

Table 4. MLE and WLE, in parentheses, for a PARMA model fitted to the PM10 series.

[2] A. V. Vecchia and R. Ballerini, “Testing for periodic au-
tocorrelations in seasonal time series data,” Biometrika,
vol. 78, pp. 53–63, 1991.

[3] E. G. Gladyshev, “Periodically correlated random se-
quences,” Sov. Math., vol. 2, pp. 385–388, 1961.

[4] W. A. Gardner and L. E. Franks, “Characterization of
cyclostationary random signal processes,” IEEE Trans-
actions on Signal Processing, vol. 21, pp. 4–14, 1975.

[5] P. Bloomfield, H. L. Hurd, and R. B. Lund, “Periodic
correlation in stratospheric ozone data,” Jour. of Tim.
Ser. Anal., vol. 15, pp. 127–150, 1994.

[6] W. A. Gardner, A. Napolitano, and L. Paura, “Cyclosta-
tionarity: Half a century of research,” Signal Process-
ing, vol. 86, pp. 639–697, 2006.

[7] H. L. Hurd and A. Miamee, Periodically correlated
random sequences: Spectral theory and practice, Wiley
Series in Probability and Statistics. John Wiley & Sons,
Hoboken, NJ, 2007.

[8] A. J. Q. Sarnaglia, V. A. Reisen, and C. Lévy-Leduc,
“Robust estimation of periodic autoregressive processes
in the presence of additive outliers,” Journal of Multi-
variate Analysis, vol. 101, pp. 2168–2183, 2010.

[9] R. Dahlhaus, “Fitting time series models to nonstation-
ary processes,” The Annals of Statistics, vol. 25, no. 1,

pp. 1–37, 1997.

[10] W. K. Li and Y. V. Hui, “An algorithm for the exact
likelihood of periodic autoregressive moving average
models,” in Communications in Statistics, vol. 17, pp.
1483–94. Taylor and Francis, 1988.

[11] R. B. Lund and I. V. Basawa, “Recursive prediction
and likelihood evaluation for periodic ARMA models,”
Jour. of Tim. Ser. Anal., vol. 21, pp. 75–93, 2000.

[12] P. Whittle, “The analysis of multiple stationary time
series,” Journal of the Royal Statistical Society. Series
B, vol. 15, pp. 125–139, 1953.

[13] W. Dunsmuir and E. J. Hannan, “Vector linear time
series models,” Adv. in Applied Probability, vol. 8, no.
2, pp. 339–364, 1976.

[14] M. Deistler, W. Dunsmuir, and E. J. Hannan, “Vector
linear time series models: Corrections and extensions,”
Adv. in Applied Probability, vol. 10, pp. 360–372, 1978.

[15] R. Fox and M. S. Taqqu, “Large-sample properties of
parameters estimates for strongly dependent stationary
gaussian time series,” The Annals of Statistics, vol. 14,
no. 2, pp. 517–532, 1986.

[16] P. J. Brockwell and R. A. Davis, Time Series: The-
ory and Methods, Springer Series in Statistics. Springer
Science, New York, NY, 2nd edition, 2006.

23rd European Signal Processing Conference (EUSIPCO)

2230


