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ABSTRACT
In this paper, we propose a new algorithm for overdetermined
blind source separation (BSS), which enables us to achieve
good separation performance even for signals recorded in a
reverberant environment. The proposed algorithm utilizes ex-
tra observations (channels) in overdetermined BSS to esti-
mate both direct and reverberant components of each source.
This approach can relax the rank-1 spatial constraint, which
corresponds to the assumption of a linear time-invariant mix-
ing system. To confirm the efficacy of the proposed algorithm,
we apply the relaxation of the rank-1 spatial constraint to con-
ventional BSS techniques. The experimental results show that
the proposed algorithm can avoid the degradation of separa-
tion performance for reverberant signals in some cases.

Index Terms— Blind source separation, overdetermined,
nonnegative matrix factorization, rank-1 spatial constraint

1. INTRODUCTION

Blind source separation (BSS) is a technique for separating
specific sources from a recorded sound without any infor-
mation. In a determined or overdetermined case (number of
microphones ≥ number of sources), independent component
analysis (ICA) [1] is the method most commonly used, and
many ICA-based techniques have been proposed [2, 3]. For
an underdetermined case (number of microphones < num-
ber of sources), nonnegative matrix factorization (NMF) [4]
has received much attention. BSS is generally used to solve
speech separation problems [5], but recently the use of BSS
for music signals has also become an active research area [6].

To solve the BSS problem even in an underdetermined
case, multichannel NMF (MNMF) has been proposed [7, 8].
MNMF estimates a mixing system for the sources so that the
decomposed bases (spectral patterns) can be clustered into
specific sources. However, MNMF has a high computational
cost and sometimes lacks robustness because of its depen-
dence on the initial values.
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For an overdetermined case, independent vector analysis
(IVA) [9], which is an extension of frequency domain ICA
(FDICA), has been proposed. We have also proposed an ef-
ficient algorithm of MNMF with the rank-1 spatial constraint
(Rank-1 MNMF) [10]. These methods estimate a demix-
ing matrix while assuming linear time-invariant mixing in the
time-frequency domain. This assumption corresponds to the
rank-1 spatial constraint. However, for reverberant signals,
the separation performance of these methods markedly de-
grades because the rank-1 spatial assumption is not valid.

In this paper, we propose a new algorithm for overde-
termined BSS, which enables us to achieve good separation
performance even for reverberant signals. The algorithm uti-
lizes extra observations (channels) to estimate the reverberant
components of each source. The efficacy of the proposed al-
gorithm is experimentally confirmed using music signals.

2. CONVENTIONAL METHODS

2.1. Linear time-invariant assumption

Let the numbers of sources and observations (channels) be N
and M, respectively. The multichannel sources, observed sig-
nal, and estimated (separated) sources in each time-frequency
slot are described as

si j = (si j,1 · · · si j,N)T, (1)

xi j = (xi j,1 · · · xi j,M)T, (2)

yi j = (yi j,1 · · · yi j,N)T, (3)

where i=1, . . . , I; j=1, . . . , J; n=1, . . . ,N; and m=1, . . . ,M
are the integral indexes of the frequency bins, time frames,
sources, and channels, respectively, T denotes a vector trans-
pose, and all the entries of the vectors are complex values.
If we assume that the mixing system is linear time-invariant,
we can define an M×N mixing matrix Ai= (ai,1 · · ·ai,N) (ai,n

denotes a steering vector) at each frequency. The observed
signal xi j is represented as

xi j = Aisi j. (4)
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Fig. 1. Mixing system of each spectrogram slot when N=M=
2; (a) has a linear time-invariant mixing system and there is
no reverberation; (b) has some leaked components from the
previous frame because of reverberation.

Figure 1 (a) shows the mixing system corresponding to (4).
In linear time-invariant mixing, all the time frames are inde-
pendent of other time frames, meaning that they do not affect
each other. However, for the case of reverberant recording,
reverberant components can leak from the previous frame as
shown in Fig. 1 (b), and the mixed signal xi j cannot be rep-
resented using only Ai. Therefore, the assumption of linear
time-invariant mixing holds only when the lengths of all im-
pulse responses between the sources and microphones are suf-
ficiently shorter than the length of the window function in the
short-time Fourier transform (STFT).

When the assumption is valid and M = N, the estimated
source yi j can be represented by a demixing matrix Wi =

(wi,1 · · ·wi,N)H (wi,n denote demixing filters) as

yi j =Wixi j, (5)

where H denotes a Hermitian transpose.

2.2. Principal component analysis for overdetermined
BSS

When M > N, in a typical separation method using FDICA
or IVA, principal component analysis (PCA) is applied in ad-
vance and the dimension of xi j is reduced so that M=N. This
preprocessing is performed with the expectation that the re-
verberant components in the observed signal are eliminated
by the dimensionality reduction. Therefore, PCA is applied
to make the assumption of linear time-invariant mixing valid
even in a reverberant environment. However, if the purpose
of source separation is to obtain each source image includ-
ing the reverberation, PCA degrades the separation perfor-
mance by removing the reverberation components. Moreover,
if the source powers in mixtures are unbalanced (e.g., music
signals), PCA can even remove direct components of weak
sources, which leads to a greater risk of poor separation.

The assumption of linear time-invariant mixing is made
valid by using a sufficiently long window function in the
STFT. However, if we use a too long window function for
FDICA or IVA, the independence assumption collapses in
each frequency band [11]. Therefore, the separation perfor-
mance has a trade-off based on the length of the window
function in terms of the assumptions of linear time-invariant
mixing and the independence of sources.

2.3. MNMF with rank-1 spatial constraint

In MNMF [8], the decomposition model of an observed signal
Xi j=xi jx

H
i j is represented as

Xi j ≃ X̂i j =
∑

k
(∑

nHi,nznk
)

tikvk j, (6)

where k = 1, . . . ,K is the integral index of the NMF bases
(spectral patterns), Hi,n is an M×M spatial covariance matrix
for frequency i and source n, znk (∈ R[0, 1]) is a latent variable
that clusters K bases into N sources and satisfies

∑
n znk = 1,

and tik (∈ R≥ 0) and vk j (∈ R≥ 0) are the elements of the basis
matrix T (∈ RI×K

≥ 0 ) and activation matrix V (∈ RK×J
≥ 0 ), respec-

tively. MNMF estimates the spatial covariance matrix H cor-
responding to each source and the source components TV .
The estimated source y is obtained by clustering TV into H
using cluster indicator Z (∈ RN×K

[0, 1] ). The variables H, Z, T ,
and V are estimated by minimizing the divergence between
Xi j and X̂i j [8]. However, this optimization has a high com-
putational cost, and the separation results strongly depend on
the initial values.

As an efficient optimization method for MNMF, Rank-1
MNMF has been proposed [10]. In this method, we assume
an overdetermined case, M ≥ N, and the spatial covariance
Hi,n is approximated by a rank-1 matrix. This approximation
corresponds to the assumption of linear time-invariant mix-
ing. Rank-1 MNMF can estimate the demixing matrix Wi

using fast IVA update rules [12] and the NMF variables T
and V using simple NMF update rules. When N=M, the fast
update rules of IVA are obtained as [12]

Vi,n = J−1∑
j

(∑
ltil,nvl j,n

)−1
xi jx

H
i j, (7)

wi,n ←
(
WiVi,n

)−1 en, (8)

wi,n ← wi,n

(
wH

i,nVi,nwi,n

)− 1
2 , (9)

yi j,n =wH
i,nxi j, (10)

where en denotes the unit vector with the nth element equal
to unity. The update rules of NMF are obtained as

til,n ← til,n

√√√√√∑
j |yi j,n|2vl j,n

(∑
l′ til′,nvl′j,n

)−2

∑
j vl j,n

(∑
l′ til′,nvl′j,n

)−1 , (11)

vl j,n ← vl j,n

√√√√√∑
i |yi j,n|2til,n

(∑
l′ til′,nvl′j,n

)−2

∑
i til,n
(∑

l′ til′,nvl′j,n

)−1 , (12)
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Fig. 2. Algorithms of (a) conventional and (b) proposed meth-
ods (N=2,M=4, P=2).

where l= 1, . . . , L is the integral index of the NMF bases for
each source, and til,n and vl j,n are the basis and its activation
that represent only source n, respectively. Similarly to (6), we
can extend Rank-1 MNMF so that the bases for each source
are adaptively determined by the latent variable Z [10].

In Rank-1 MNMF, we can optimize all the variables Wi,
T , and V faster and more robustly than in conventional
MNMF. However, if the reverberation time of the recorded
environment increases, the separation performance markedly
degrades because the approximation of the rank-1 spatial
model collapses. Conventional MNMF can achieve a certain
level of separation even for reverberant signals because this
method can estimate full-rank spatial covariance matrix Hi,n.

3. PROPOSED METHOD

3.1. Relaxation of rank-1 spatial constraint utilizing extra
observations

To relax the constraint of the rank-1 spatial model in Rank-
1 MNMF, we propose the utilization of extra observations
for modeling the reverberant components. In this method,
we consider that the number of observations M is P times
the number of sources N, namely, M = PN. In conventional
overdetermined BSS, PCA is applied before the separation so
that M equals N as shown in Fig. 2 (a). In the proposed algo-
rithm, we estimate M separated signals ỹ as shown in Fig. 2
(b). In this approach, the leaked component from previous
frames (ni j−1 in Fig. 1 (b)) of each source is modeled as an
additional new source, namely, each original source is repre-
sented with rank-P spatial model. To obtain an estimate of
the source including both direct and reverberant components,
the separated signals must be clustered using some criteria,
which is a kind of permutation problem. The clustered sepa-
rated signal ỹ is represented as follows:

ỹi j =
(
ỹi j,11 · · · ỹi j,1P ỹi j,21 · · · ỹi j,2P · · · ỹi j,NP

)T
, (13)

yi j,n =
∑

pỹi j,np, (14)

where ỹi j,n1, . . . , ỹi j,nP correspond to the direct and reverberant
components of one source n. Finally, each estimated source
yi j,n is reconstructed by summing of the clustered components
as represented by (14).

3.2. Clustering with spectral correlations

In Sect 3.1, the complex-valued spectrograms of the sources
are estimated by assuming the independence between them.
However, we can expect that the power spectrograms of the
direct and the reverberant components for the same source
have a correlation. Based on this assumption, we propose to
use cross-correlation between the power spectrograms Ỹi j,np=

|ỹi j,np|2 to determine which separated signal ỹi j,np corresponds
to the direct or reverberant component of which source:

C(A∥B) = max
({∑

i, jai jbi j+τ | τ = 0, 1, . . . , τmax

})
, (15)

where A (∈ RI×J
≥ 0 ) and B (∈ RI×J

≥ 0 ) are the power spectrograms,
ai j and bi j denote the elements of A and B, respectively, and
τ is an index of the delay in the time frame. For clustering, we
first calculate (15) between all separated signals ỹi j,np. Then,
the signals are merged in descending order of C until the num-
ber of clusters becomes N, with all the clusters (signal sets)
required to have the same number of signals (see Fig. 3).

3.3. Auto-clustering with basis-shared Rank-1 MNMF

For Rank-1 MNMF, we can consider another approach for
clustering the signals ỹi j,np. Since the reverberation consists
of a sum of time-delayed versions of the direct component, it
is represented by the convolution. Even in the power spectro-
gram domain, this model is approximately valid [13]. If we
assume that the impulse response in the power spectrogram
domain is identical over all frequency bins, the direct and re-
verberant components of the same source can be modeled by
the same bases Tn (spectral patterns) and different activations
Vnp (time-varying gains) as follows:

Ỹn1 ≃ TnVn1, Ỹn2 ≃ TnVn2, . . . , ỸnP ≃ TnVnP, (16)

where Ỹnp(∈ RI×J
≥ 0 ) is the power spectrogram of signal ỹi j,np,

Tn (∈ RI×L
≥ 0 ) is a shared basis matrix whose elements are

ti1,n, . . . , tiL,n, and Vnp (∈ RL×J
≥ 0 ) is an activation matrix whose

elements are v1 j,np, . . . , vL j,np. This basis sharing leads to the
separated signals ỹi j,n1, . . . , ỹi j,nP representing the direct and
reverberant components of one source n. The cost function of
basis-shared Rank-1 MNMF can be defined as

Q =
∑

i, j

[∑
n,p

|ỹi j,np|2∑
l til,nvl j,np

− 2 log | detWi|

+
∑

n,p log
∑

ltil,nvl j,np

]
. (17)

The update rules of Wi for minimizing (17) are the same as
(7)–(10) if we consider N←M=NP, and the update rules of
the NMF variables are obtained as follows:

til,n ← til,n

√√√√√∑
j,p |yi j,np|2vl j,np

(∑
l′ til′,nvl′j,np

)−2

∑
j,p vl j,np

(∑
l′ til′,nvl′j,np

)−1 , (18)

vl j,np ← vl j,np

√√√√√∑
i |yi j,np|2til,n

(∑
l′ til′,nvl′j,np

)−2

∑
i til,n
(∑

l′ til′,nvl′j,np

)−1 . (19)
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However, the clustering result fluctuates depending on the ini-
tial values of the variables. To avoid this problem, we used
IVA and the clustering method described in Sect 3.2 to obtain
initial value of demixing matrix Wi.

4. EXPERIMENT

4.1. Conditions

To confirm the efficacy of the proposed algorithm, we con-
ducted an evaluation experiment using professional music
signals. In this experiment, we produced observed signals
with M = 4 channels and N = 2 sources by convoluting the
impulse response JR2 (see Fig. 4) from the RWCP database
[14] with each source. Table 1 shows the songs and sources
used, which were obtained from SiSEC [15]. We compared
IVA with PCA (PCA+IVA) and Rank-1 MNMF with PCA
(PCA+Rank-1 MNMF), which both assume the rank-1 spatial
constraint. In addition, two types of conventional MNMF [8]
were also evaluated: MNMF w/o MWF and MNMF+MWF.
In MNMF w/o MWF, the maximum SNR beamformer [16],
which is calculated from the estimated spatial covariance Hi,n,
was used for separation. MNMF+MWF utilizes multichan-
nel Wiener filtering (MWF) to enhance the estimated sources.
As the proposed methods, constraint-relaxed IVA with the
clustering method in Sect. 3.2 (Proposed IVA) and constraint-
relaxed Rank-1 MNMF with basis sharing (Proposed Rank-1
MNMF) were evaluated, where the pretrained and clustered
demixing matrix was used for the initial value in Proposed
Rank-1 MNMF. Moreover, we evaluated the limit separation
performance of linear filtering (Ideal linear filter), which is
the maximum SNR beamformer calculated using the ideal
spatial covariances of each source. It is necessary to apply a
back-projection technique [17], except for in MNMF+MWF,
to the estimated sources. The characteristics of each method
are shown in Table 2 and the other conditions are described
in Table 3. Note that we used a 128-ms-long window in the
STFT for the signals that have 470-ms-long reverberation,

Table 1. Music sources
ID Song Source (1/2)
1 bearlin-roads snip 85 99 acoustic guit main/piano
2 fort minor-remember the name snip 54 78 drums/vocals
3 ultimate nz tour snip 43 61 guitar/vocals

Table 2. Characteristics of each method
Method # of filters per source Postfilter

PCA+IVA 1 None
PCA+Rank-1 MNMF 1 None

MNMF w/o MWF 1 None
MNMF+MWF 1 MWF

Ideal linear filter 1 None
Proposed IVA 2 None

Proposed Rank-1 MNMF 2 None

which means that the rank-1 spatial model collapses. As
the evaluation scores, we used the signal-to-distortion ratio
(SDR) [18], which indicates the total separation performance.

4.2. Results

Figure 5 shows the average scores and their deviations in 10
trials with various initializations. The methods using PCA
cannot achieve good separation because they require the rank-
1 spatial approximation. The scores of MNMF w/o MWF
indicate poor separation accuracy and strong dependence on
the initial values because it is difficult to estimate the full-
rank spatial covariance H. However, MWF with NMF vari-
ables can greatly enhance the estimated sources. Proposed
Rank-1 MNMF separates the sources with high accuracy. In
particular, this method outperforms the limit performance of
linear filtering (Ideal linear filter) as shown in Figs. 5 (b) and
(c). This is because ground truth sources include reverbera-
tions, which can span more than two dimensional space, and
the proposed algorithm can effectively relax the rank-1 spa-
tial constraint. Table 4 shows actual computational times for
the separation of song ID3, where the calculations were per-
formed using MATLAB 8.3 (64-bit) with an Intel Core i7-
4790 (3.60 GHz) CPU. The computational time of Proposed
Rank-1 MNMF includes the initialization time for Wi, which
is the same as that of Proposed IVA. We confirm that Pro-
posed Rank-1 MNMF can maintain efficient optimization and
achieve good separation performance.

5. CONCLUSION

In this paper, we proposed a new relaxation method for the
rank-1 spatial constraint. This method utilizes extra observa-
tions to estimate reverberant components while maintaining
the rank-1 model. The efficacy of the proposed method was
confirmed with IVA and Rank-1 MNMF, and they achieved a
good separation performance even for reverberant signals.
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