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ABSTRACT

This paper presents algorithms for two-sided diagonalization
of order-three tensors. It is another expression for joint non-
symmetric approximate diagonalization of a set of square ma-
trices, say T1, . . ., TM : We seek two non-orthogonal matri-
ces A and B such that the products ATmBT are close to
diagonal in a sense. The algorithms can be used for a block
tensor decomposition and applied e.g. for tensor deconvolu-
tion and feature extraction using the convolutive model.

Index Terms— Multilinear models; canonical polyadic de-
composition; parallel factor analysis; block-term decomposi-
tion; joint matrix diagonalization

1. INTRODUCTION

The two-sided diagonalization of an order-three tensor T can
be viewed as a non-symmetric joint diagonalization of a set of
matrices. A given tensor of the size N×N×M is represented
by M matrices of the size N × N , say T1, . . . ,TM . The
nonsymmetric matrix diagonalization means finding N × N
matrices A and B such that the matrices

Em = ATmBT (1)

are diagonally dominant in a sense. Here, T stands for the
matrix transposition. The non-symmetric Approximate Joint
Diagonalization (AJD) is an extension of a symmetric AJD,
see [1], which has found many applications in blind audio
source separation or in operational modal analysis [2]. Con-
ceptually, the diagonalization is similar to three-sided diago-
nalization of order-3 tensor or three-sided diagonalization of
order-4 tensor [3]. In the latter case one seeks three matrices
A, B and C such that their product with the given tensor of
the size N × N × N × M along its first three dimensions
is close to a spatially diagonal tensor. With a slight abuse of
notation we keep the same name for the two-sided diagonal-
ization, TEDIA (TEnsor DIAgonalization).

There are many existing algorithms for a symmetric AJD,
where A = B or A = B∗, “∗” denotes complex conjugation,
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but not that many algorithms for the nonsymmetric AJD [4].
The algorithm presented in this paper produces, as a solution,
matrices A and B of determinant 1 such that the demixed ten-
sor E composed of the slices Em in (1) obeys certain stopping
condition described later, called a block revealing condition.
Basically, the condition means that all further optimum ele-
mentary rotations are trivial. Thus the solution is not unique
in the strict sense, but the subspaces spanned by columns of
A, B, are unique.

The main purpose of the diagonalization is the block-term
decomposition (BTD) [5, 6]. In the case of the two-sided di-
agonalization, it is a non-symmetric approximate joint block-
diagonalization of a set of matrices. Note that the symmetric
joint block-diagonalization of a set of matrices is subject of
the papers [7]–[10].

For the BTD, the main existing algorithms are alternating
least squares (ALS) [6] and non-linear least squares (NLS)
[11]. These algorithms have a drawback of a poor global
convergence. If they are not initialized properly, they are
frequently trapped in false local minima. Multiple random
initialization of these algorithms may help only a little. The
tensor diagonalization serves as a tool finding a suitable ap-
proximate block-term decomposition, which can be improved
by the dedicated methods.

Consider the off-diagonality operator off2(·) which trans-
forms the core tensor E into a tensor of the same size, having
the elements (1− δij)eijk for i, j, . . . , N and k = 1, . . . ,M ,
where δij is the Kronecker delta. In other words, the operator
nullifies the elements eiik, i = 1, . . . , N and k = 1, . . . ,M ,
and keeps the remaining tensor elements unchanged. Then,
diagonality of the core tensor can be measured in terms of the
Frobenius norm of off2(E), denoted ∥off2(E)∥F .

As in the accompanying paper [3], TEDIA does not mini-
mize the above mentioned criterion directly, but aims at achiev-
ing the block-revealing condition.

The rest of the paper is organized as follows: in Section 2
an iterative algorithm is proposed to perform the diagonaliza-
tion either in the real or complex domains. Section 3 describes
usage of the procedure for block diagonalization. Section 4
presents applications, and Section 5 concludes the paper.
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2. ALGORITHM TEDIA

In this section we present two versions of the algorithm: se-
quential and parallel.

Assume that E is a partially diagonalized tensor obtained
during the optimization process. The sequential TEDIA pro-
ceeds by a cyclic application of elementary rotations for all
pairs of distinct indices i, j = 1, . . . , N . The elementary ro-
tations are represented by matrices Aij(θ), Bij(θ) and which
have the same 0-1 elements as the N ×N identity matrix ex-
cept for the 2×2 submatrices with the row and column indices
(i, j), i ̸= j, of the form

[Aij(θ)][ij],[ij] =

[ √
1 + θ1θ2 θ2
θ1

√
1 + θ1θ2

]
(2)

[Bij(θ)][ij],[ij] =

[ √
1 + θ3θ4 θ4
θ3

√
1 + θ3θ4

]
(3)

so that the Frobenius norm of off2(E ′) is minimized, where
E ′ is the transformed tensor

E ′ = E ′(θ) = E ×1 Aij(θ)×2 Bij(θ) (4)

and θ = (θ1, θ2, θ3, θ4)
T . Note that the elementary rotations

are constructed so that their determinants are one. The matrix
Aij(θ) depends only on the first two elements of the vector
θ, and similarly Bij(θ) depends only on the second pair of
elements of θ. The core tensor and the factor matrices Ã and
B̃ are updated as

E ←− E ′(θ), Ã←− ÃA−1
ij (θ), B̃←− B̃B−1

ij (θ) (5)

where θ is an approximate minimizer of the cost function
Ξ(θ) = 1

2∥off2(E ′(θ))∥2F . The parameter value θ is found
as

θ = −H−1g (6)

where g and H are the gradient and approximate Hessian of
Ξ(θ) with respect to θ at the point θ = 0. The optimization
can proceed in the same way in the real-domain and in the
complex domain, if g and H are computed as

g = JHvec(off2(E)), H = JHJ (7)

where the superscript H denotes Hermitian transpose, and

J = J(θ) =
∂vec(off2(E ′(θ)))

∂θ

∣∣∣∣
θ=0

(8)

is the Jacobi matrix of the size N3 × 4 evaluated at θ = 0.
A straightforward computation leads to the result

g(i,j) =


λij − uH

jiuii

λ∗
ij − uH

ijujj

µij − uH
ijuii

µ∗
ij − uH

jiujj

 (9)

and H(i,j) =
λjj − ∥uji∥2 0 0 uH

jjuii

0 λii − ∥uij∥2 uH
iiujj 0

0 uH
jjuii µjj − ∥uij∥2 0

uH
iiujj 0 0 µii − ∥uji∥2


(10)

where uij is a column vector with elements eijm, m =

1, . . . ,M , λij =
∑N

k,ℓ=1 e
∗
jkℓeikℓ, µij =

∑N
k,ℓ=1 e

∗
kjℓekiℓ.

Note that the Hessian in (10) is, after permuting its rows and
columns, block diagonal; its inversion can be found by invert-
ing two matrices of the size 2× 2.

We propose to do a single step of the Gauss-Newton method
for each pair (i, j) only in each sweep, provided that the cost
function decreases.

In some cases it may happen, however, that the cost func-
tion increases, or there is some other problem, namely in op-
timization in the real domain: some of the conditions 1 +
θ1θ2 ≥ 0, 1+θ3θ4 ≥ 0, 1+θ5θ6 ≥ 0 may be violated. In the
latter cases we suggest not to accept such step, but to switch
to the damped Gauss-Newton method, and apply an update

θ = −(H+ µI4)
−1g (11)

where µ is a suitable positive constant such that the regular-
ity conditions are fulfilled and the criterion decreases. Op-
tionally it is possible to add a few more steps of the damped
Gauss-Newton method for the same (i, j) until the cost func-
tion stops reducing.

The computational complexity of building up one Hessian
matrix and the gradient is O(N2M), the solution of the 4× 4
system has a complexity of O(1). Since there are O(N2)
pairs (i, j), each sweep needs O(N4M) operations.

The sweeps are iterated until the Euclidean norm of op-
timum parameter θ in every elementary rotations becomes
smaller than a user chosen constant, say ε = 10−6. The num-
ber of the sweeps needed to achieve a convergence depends,
indeed, on the dimension of the problem, presence of additive
noise, and other factors. The algorithm can start, for example,
with A = B = I. When the algorithm terminates, all gradi-
ents g(i,j) are (approximately) zero. The condition g(i,j) = 0
for all pairs (i, j), i ̸= j, is the block-revealing condition.

Finally, we describe a parallel version of the TEDIA algo-
rithm. Here, aij , aji, bij , bji (elements of θ) are computed as
solutions of the linear systems (6) keeping the core tensor the
same for all pairs (i, j). Since the core tensor is kept constant,
the computation can proceeds for all pairs (i, j) in parallel. In
MatlabTM it is realized through elementwise vector and ma-
trix operations, so that tedious “for” loops are avoided.

These elements are stored in auxiliary matrices Aaux, Baux.
The diagonal of these matrices is computed separately to achieve
the condition detAaux = detBaux = 1. The initial di-
agonals of Aaux, Baux are set to ones. Then, the diagonal
of these matrices is adjusted by appropriate constants cA, cB
such that

det(Aaux − cAI) = det(Baux − cBI) = 1.
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We note that det(Aaux − cI) is a characteristic polynomial
of Aaux. Then cA is selected as the root of the polynomial
minus 1 that is closest to zero. Similarly cB is computed.

Once Aaux, Baux of determinant 1 are found, the core
tensor is updated as

E ←− E ×1 Aaux ×2 Baux

Ã ←− ÃA−1
aux, B̃←− B̃B−1

aux . (12)

If off2(E) is not reduced, then the step is not accepted and the
algorithm computes Aaux, Baux using θ’s obtained through
the damped Gauss-Newton formula (11). Advantage of the
parallel implementation is an increased speed compared to the
sequential version.

3. BLOCK DIAGONALIZATION

As in [10, 3], it holds that the block-diagonalization can be
obtained by applying TEDIA and sorting rows in matrices A
and B so that the blocks in the core tensors are revealed.

The degree of diagonality or block-diagonality of a tensor
E can be judged via the matrix F of size N × N , having
elements

fij =
M∑

m=1

|eijm| (13)

The tensor E is said diagonal (block-diagonal) if and only if
F is diagonal (block-diagonal). Then, F or its symmetrized
version F+FT may be considered as a measure of similarity
between columns in the mixing matrices, or an indicator of
“probability” that they belong to the same block.

Such permutation can be found e.g. using the well known
reverse Cuthill-McKee algorithm (RCM)[12], implemented
in MatlabTM as function symrcm, applied to the matrix F. In
the noisy case, when the blocks of the core tensors are fuzzy,
we have better experiences with standard clustering methods,
such as hierarchical clustering with the average-linking pol-
icy [13], taking F as similarity matrix [3].

4. EXAMPLES

4.1. Block term decomposition

First, we tested performance of TEDIA on simulated data.
The initial (core) tensor was computed as block diagonal, with
three blocks of the size 5× 5× 15, generated randomly, nor-
mally distributed with zero mean and variance 1. The tensor
has the size 15× 15× 15, i.e. N = M = 15.

The mixing matrices Ã and B̃ are obtained as products
QAAc and QBAc, respectively, where QA,QB are random
orthogonal matrices of the size 15×15, and Ac = ε115×15+
γI15, where ε = (

√
1− c+Nc−

√
1− c)/N ,

γ =
√

1− (N − 1)ε2 − ε, and c is a parameter to control
colinearity of columns of the demixing matrices.
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Fig. 1. Mean square angular error in dB of subspaces in
partitioned factor matrices of the tensor obtained using TE-
DIA and of ALS initialized by the outcome of TEDIA, for
c = 0.2 as a function of the input SNR (upper diagram) and
for SNR=30dB and varying c (lower diagram).

Accuracy of the estimation of the blocks of the mixing
matrices Ã, B̃ will be determined in terms of mean square
angles between the linear space spanned by the quadruples
(a1, . . . ,a5), (a6, . . . ,a10), (a11, . . . ,a15), (b1, . . . ,b5),
(b6, . . . ,b10), (b11, . . . ,b15), and their estimates (MSAE).
The angles between the subspaces can be computed in MatlabTM

by function “subspace”.
Performance of TEDIA will be compared with perfor-

mance the ALS algorithm [6], which is initialized by the out-
come of TEDIA. The result – an average MSAE of 100 inde-
pendent trials for each pair (c,SNR) as a function of the input
SNR for c = 0.2 and as a function of c for SNR=30 dB – are
plotted in Fig. 1. We can see that the ALS algorithm exceeds
performance of the plain TEDIA by 3-4 dB. In the noiseless
case, TEDIA separates the blocks perfectly. The main dif-
ference is in the computation time. The TEDIA proceeds in
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0.45s on average. Execution of the ALS takes 6.6s on aver-
age, and the initialization is crucial. Without the initialization
using TEDIA, the ALS is not reliable.

We conclude that TEDIA itself is not statistically opti-
mum estimator of the subspaces, it is inferior to ALS. Its ad-
vantage is twofold: (1) it does not need to know sizes of the
blocks in advance, and (2) it finds a good solution without the
unreliable multiple random initializations, and if used prior
ALS or NLS, it significantly reduces the number of their iter-
ations.

4.2. Diagonalization for DS-CDMA receiver

This example illustrates efficacy of TEDIA for block term de-
composition used in DS-CDMA system [14]. Consider a sys-
tem of R users transmitting at the same time within the same
bandwidth, frames of J symbols spread by DS-CDMA codes
of length I towards an array of K antennas over a specular
multipath channel with P discrete paths. The tensor Y of
size I × J ×K comprising of samples yi,j,k of received sig-
nals can be expressed through a convolutive model given in a
block component model

Y =

R∑
r=1

Hr ×2 Sr ×3 Ar (14)

where Sr are (J×L) Toeplitz matrices containing interfering
symbols of the r-th user, tensors Hr are of size I × L × P ,
vectors vec(Hr(:, :, p)) represent spreading waveforms of the
r-th user over the p-th path, and the (K × P ) matrices Ar

holds responses of the k-th antenna to the signal of the r-
user coming from the p-th path. For detailed derivation of the
model, we refer to [14].

The expression (14) can be written as

Y = H×2 [S1, . . . ,SR]×3 [A1, . . . ,AR] (15)

where H(i, :, :) = blkdiag(H1(i, :, :, ), . . . ,HR(i, :, :, )). As-
sume that LR ≤ J and PR ≤ I . Then, the blocks can be
estimated by applying two-side tensor diagonalization to the
tensor Y along modes 2 and 3.

Sub matrices S0,r of size (J × L) are then factorized to
find the Toeplitz matrices S̃0,r as S0,r = S̃0,rQr [18]1. The
matrices A0r and S̃0,r are then used as a good initial value
for the block decomposition in (14).

For our computer simulation, we set the spreading codes
of length I = 20 or 30, short frames of J = I BPSK-symbols,
K = I antennas, L = 5 interfering symbols, P = 5 major
paths per user and R = 2 users. Parameters were randomly
drawn from the Gaussian distribution, and the tensor data was
degraded by additive Gaussian noise with zero mean at signal
to noise ratio SNR = 10, 20, 30 and 40 dB. As reported in [14],

1An implementation of the Toeplitz factorisation is provided at
http://perso-etis.ensea.fr/ nion

Table 1. Performance comparison for the ALS algorithm
using random initialization, or TEDIA s outputs in Exam-
ple 4.2 at different SNR = 10, 20, 30, 40 dB. Execution time
is given in second, while error means the approximation error
∥Y − Ŷ∥F .

Algorithm
SNR (dB)

10 20 30 40
I = J = K = 20

TEDIA
BER
Time
Error

0.1896
0.8

0.898

0.1128
0.7

0.656

0.0177
0.7

0.268

0.0012
0.7

0.263

ALS+
Random

BER
Time
Error

0.0175
18.4

0.432

0.0026
18.4
0.137

0.0176
16.4
0.048

0.0003
13.5
0.014

ALS+
TEDIA

BER
Time
Error

0.0017
10.6

0.432

0.0004
6.8

0.137

0
4.2

0.043

0
3.9

0.014
I = J = K = 30

TEDIA
BER
Time
Error

0.0783
0.8

0.813

0.0343
0.7

0.656

0.0017
0.8

0.268

0.0006
0.7

0.263

ALS+
Random

BER
Time
Error

0
19.7

0.417

0
18.3
0.138

0.0012
23.1
0.065

0
24.5
0.021

ALS+
TEDIA

BER
Time
Error

0
13.9

0.416

0
10.6
0.132

0
8.6

0.041

0
10.1
0.013

the ALS algorithm for this tensor decomposition needs a large
number of iterations when the condition number of the matrix
A = [A1,A2] is high, say 100, 200. In our simulations,
the condition number was 100. The ALS algorithm [14, 19]
will stop when difference of consecutive approximation error
|ε − εold| < 10−5 εold where ε = ∥Y − Ŷ∥F , or when the
number of iterations exceeds 3000.

Table 1 reports the performance of TEDIA and the ALS
algorithm initialized using random value or TEDIA’s output.
When the noise was low, e.g., SNR ≥ 30 dB, the sequences
estimated from output of TEDIA without any further decom-
position achieved relatively low bit error rate (BER). TEDIA
executed within less than 1 second on a computer with 3.33
GHz core i7 CPU. When initializing by random values, the
ALS algorithm took 14-19 seconds for the test case I = J =
K = 20, but did not achieve good BERs as this algorithm
initialized using TEDIA. When I = J = K = 30, ex-
ecution time of the ALS algorithm was approximately 20-
25 seconds. When initializing using TEDIA, the ALS al-
gorithm converged earlier and achieved better BERs when
I = J = K = 20 and perfect estimation for the case of
I = J = K = 30.
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5. CONCLUSION

We have presented the technique of non-orthogonal two-side
diagonalization of order-three tensors. This technique can be
used for CP and block tensor decomposition in the real or
complex domains as a good initial solution for other dedicated
methods of the decomposition. Applications can be found in
tensor deconvolution, in particular for CDMA receivers, but
also in other areas, e.g. in the tensor deconvolution [20].

Matlab code of the proposed technique is posted on the
web page of the first author.
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[9] P. Tichavský, Z. Koldovský, “Algorithms for nonorthog-
onal approximate joint block-diagonalization”, Proc.
EUSIPCO 2012, Bucharest, Romania, August 27 - 31,
2012, pp. 2094–2098.
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