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ABSTRACT 
 
The ability of automatically determining the underlying 
fault type in-situ for a roller element bearing is highly 
desired in machine condition monitoring applications 
nowadays. In this paper, we classify roller element fault 
types under a compressed sensing framework. Firstly, 
vibration signals of roller element bearings are acquired in 
the time domain and resampled with a random Bernoulli 
matrix to emulate the compressed sensing mechanism. 
Sample entropy based features are then computed for both 
the normalized raw vibration signals and the reconstructed 
compressed sensed signals. Classification performance 
using Support Vector Machine (SVM) shows slight per-
formance degradation with significant reduction of the 
bandwidth requirement.  

Index Terms— Bearing Fault Classification, Com-
pressed Sensing, Machine Condition Monitoring, Sample 
Entropy  
 

1. INTRODUCTION 
 
Machine condition monitoring research [1] has advanced 

in recent years and is moving from a predominantly la-

bour intensive human monitoring based approach to a one 

that is highly automated where interventions are required 

only when a fault is detected [2-5]. This has driven the 

need for algorithms that automatically identify when a 

machine’s operating characteristics digress from its nor-

mal operating conditions. Many solutions have been pro-

posed in this respect, from basic decision making by ob-

servation of the various characteristics of the vibration 

time series, through to various machine learning based 

approaches. 

The ability of identifying a fault condition in roller el-

ement bearings enables one to prescribe appropriate solu-

tion when a fault is detected, e.g. applying lubrication, 
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dusting, replacing the faulty ball bearing, etc. However, in 

many industries, scheduling downtime for corrective 

maintenance is often a complex task. Furthermore, for 

large scale machineries, waiting for a fault to occur could 

be catastrophic to the entire operation. Therefore, in such 

cases, periodically scheduled preventive maintenance 

measures are often sought. Nevertheless, these preventive 

maintenance measures, in many cases, are not so cost 

effective, as quite often the optimal lifetimes of specific 

parts are not known. This drawback led the industries and 

the research communities to search for measures that are 

able to estimate and predict when a fault is likely to occur, 

i.e. predictive maintenance.  

To enable predictive maintenance, one needs to be 

able to monitor the running condition of the machine 

online. A common automation approach is to utilise the 

classical pattern classification framework. Within this 

framework, we first extract discriminating features from 

the raw vibration signals and then employ a chosen classi-

fier to classify the healthy and faulty patterns.  

With the advancement of wireless sensors and com-

munication technologies, it is now possible to monitor 

machines remotely. However, there is always a bandwidth 

limitation which limits the number of machines that can 

be monitored across the network. In this work, our prima-

ry aim is to investigate a mechanism to reduce the band-

width requirement for such deployment. More precisely, 

compressed sensing [6] is utilised to enable us to sample 

at much less than the Nyquist rate and subsequently the 

effect on the classification performance is studied herein.   
 

2. PROBLEM DESCRIPTIONS 
 
Our aim is to distinguish faulty roller elements bearings 

from the healthy normal bearings and to ascertain which 

type of faults. The vibration data used in this paper have 

been taken from experiments on a small test rig, which 

simulates an environment for running roller bearings. Six 
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conditions have been recorded and tested. Two normal 

conditions -- a brand new condition (NO) and a worn but 

undamaged condition (NW); four fault conditions -- inner 

race (IR) fault, outer race (OR) fault, rolling element 

(RE) fault, and cage (CA) fault. Data was recorded over a 

range of 16 speeds. The variation of speeds adds some 

non-stationary characteristics to this problem. Fig. 1 de-

picts some typical time series plots for the six different 

aforementioned conditions.  

Depending on the fault conditions, the defects modu-

late the vibration signals with their respective patterns. 

The inner and outer race fault conditions have a fairly 

periodic signal; the rolling element fault may or may not 

be periodic, dependent upon several factors including the 

degree of damage to the rolling element, the loading of the 

bearing, and also the track that the ball describes within 

the raceway itself. The cage fault generates a random 

distortion, which also depends on the degree of damage 

and the bearing loading.  

 
 

Fig. 1.  : Typical vibration signals for the six different 
conditions. 

The experimental data used in this work was acquired 

from a roller element bearing test rig. The test rig consists 

of a DC motor driving the shaft through a flexible cou-

pling, with the shaft supported by two plummer bearing 

blocks. A series of damaged bearing were inserted in one 

of the plummer blocks, and the resultant vibrations in the 

horizontal and vertical planes were measured using two 

accelerometers. The output from the accelerometers was 

fed back through a charge amplifier to a Loughborough 

Sound Images DSP32 ADC card (using a lowpass filter 

with a cut-off 18 kHz), and sampled at 48 kHz, giving a 

slight oversampling. The machine was run at a series of 

different speeds ranging between 25 and 75 rev/s, and ten 

time series were taken at each speed. This gave a total of 

160 examples of each condition, and a total of 960 raw 

data files to work with.  

 

3. COMPRESSED SENSING 
 
In the last decade, compressed sensing or compressive 

sensing [6], has received much attention for its ability to 

allow one to sample at much less than the Nyquist rate 

and recover the original signal afterwards. One prelimi-

nary requirement is that the signal needs to be compactly 

represented in some domain, e.g. time, frequency, Dis-

crete Cosine Transform, etc.  In our case, the vibration 

signals can be decomposed into several dominant fre-

quency components and therefore one can represent the 

time domain signals using a finite sum of sinusoids, which 

satisfy the sparseness in frequency domain. When a fault 

occurs, it exhibits itself both in the time and the frequency 

domain.  

Briefly, we present the simplified compressed sensing 

framework as follows:  

Let y ൌ Mx	be the compressed sensed signal vector 

where x ∈ R୬ൈଵ   denotes the original signal vector. The 

sensing matrix, M ∈ R୫ൈ୬, is a chosen matrix (e.g. Fouri-

er, Gaussian or Bernoulli Matrix) for which m < n. 

If the signal is sparse in the frequency domain, then 

one can actually sample in the frequency domain which 

can be implemented in the time domain by carefully se-

lecting the sensing matrix as the product of an inverse 

Fourier Transform Matrix, F-1, and a sparse binary matrix, 

R, with at most a single non-zero entry in each of its col-

umn (see [7]). In other word, M = F-1R.  

Thus, reconstruction from the compressed sensed vec-

tor y can then be dealt with as a solution of underdeter-

mined linear system of equations. A conventional convex 

optimization technique based on ℓ1-norm was used to 

reconstruct a vector, xො, as the estimation of the original x: 

xො ൌ arg min
y=Mx

 ଵ (1)||ܠ||

In our paper, we segmented a time series of original 

signals into non-overlapping segments of 512 data points. 

The ratio of down-sampling of x is signified by , i.e.  

݉ ൌ ݊. We set  to 0.5 and 0.25 respectively; thus the 

compressed sensed vectors are of lengths 256 and 128 

respectively. 
 

4. ENTROPICS FEATURES 
 
For classifying the reconstructed signals, we lend our-

selves to the entropic features proposed in [8] as intro-

duced in this section.   

The classical formulation of Shannon entropy, 

H୬ ൌ െ∑ pሺx୧ሻ log pሺx୧ሻ୶౟∈ଡ଼ , has long been interpreted as 

0 0.01 0.02 0.03 0.04

-30

-20

-10

0

10

20

30

40

50

t/ms

A
m

pl
itu

de
/m

V

NO

0 0.01 0.02 0.03 0.04
-50

-40

-30

-20

-10

0

10

20

30

40

50

t/ms

A
m

pl
itu

de
/m

V

NW

0 0.01 0.02 0.03 0.04
-250

-200

-150

-100

-50

0

50

100

150

200

t/ms

A
m

pl
itu

de
/m

V

IR

0 0.01 0.02 0.03 0.04

-30

-20

-10

0

10

20

30

40

t/ms

A
m

p
lit

ud
e/

m
V

OR

0 0.01 0.02 0.03 0.04
-300

-200

-100

0

100

200

t/ms

A
m

p
lit

ud
e/

m
V

RE

0 0.01 0.02 0.03 0.04

-40

-30

-20

-10

0

10

20

30

40

t/ms

A
m

p
lit

ud
e/

m
V

CA

23rd European Signal Processing Conference (EUSIPCO)

2297



a measure of system uncertainty. For a time indexed se-

quence of discrete random variables, such as the sampled 

and quantized vibration signals above, the joint entropy of 

each samples are defined as: 

௡ܪ ൌ െ ෍ ෍ ⋯,଴ݔሺ݌ , ௡ିଵሻݔ log ⋯,଴ݔሺ݌ , ௡ିଵሻݔ
௫೔∈௑೙షభ௫೔∈௑బ

 (2) 

where p(x1,⋯, xn ) is the joint probability of the n samples 

in the sequence. For characterizing the system dynamics, 

the Kolmogorov-Sinai (KS) entropy, which is defined as 

the average rate of new information generation, is usually 

used. However, it is difficult to estimate KS entropy with-

in a satisfactory precision. However, for short, and noisy 

time series, Pincus [9] had proposed the approximate 

entropy (ApEn) to estimate the rate of generating new 

information. The notation ApEn(M, r, N) denotes the 

approximated negative natural logarithm of the condition-

al probability that a N-point sequence, having repeated 

itself for M points within a selected tolerance, r, will be 

repeating itself for (M+1) points. The tolerance parameter, 

r, by convention, is set to a fraction of the standard devia-

tion of the sequence for convenience.  

To reduce the bias caused by pattern self-matching, 

Richman and Moorman [10] proposed the Sample Entro-

py (SampEn) for sampled time series data from a continu-

ous process which give the precise negative logarithm 

intended for ApEn above. For the actual process of com-

putation, the readers are referred to [10-11] for an in-depth 

analysis and discussion. A typical setting for the tolerance 

factor, i.e. r equals 0.2 times the standard deviation, is 

used in this work.  
 

5. EMPIRICAL VALAIDATION  
 
We validated our proposed method through computer 

experiments. To emulate the compressed sensing envi-

ronment, each raw vibration acquired as described in 

Section 2 are first divided into ten non-overlapping seg-

ments of 512 samples, and each segment is then 

resampled according to the framework in Section 3 using 

values of α = 0.5 and 0.25. Afterwards the individual 

segments are reconstructed using L1 convex optimization 

implemented using the CVX MATLAB toolbox [12-13] 

and then concatenated back into a vibration signal of 

length 5120. With this, we have three sets of database for 

investigation, corresponding to the original data, data for 

α = 0.5, and data for α = 0.25.  

Fig. 2 depicts an illustration of 512 points of the orig-

inal data and their reconstructions for the six conditions. 

Original data is described by blue lines and reconstruction 

data by red ones. It is observed that, although there some 

reconstruction errors, the two signals are largely similar.  

 

Fig. 2.  : Comparisons of the original signals (in blue) versus the 
reconstructed signals (in red) for the six conditions.  

 
5.1. EXPERIMENTAL SETUP 
 
For the roller element bearing dataset described in Section 

2, three SampEn (m = 0, 1, 2) features per vibration were 

extracted. The SampEn was extracted by utilizing the 

PhysioNet MATLAB scripts (available online at 

http://www.physionet.org/physiotools/sampen/matlab/).   

The computing platform for the experiment reported 

in this paper is a desktop, with an Intel Core i7 quad core 

processor, 8GB RAM, professional graphic card with 

1GB VRAM, running on 64-bit Windows 7. MATLAB 

2013a is used as the main testing platform, with necessary 

classifier toolboxes. 

The classification accuracy rates are obtained by av-

eraging the results of ten experiments for each classifier 

and for each experiment, ten-fold validation was em-

ployed. The averaged accuracy rate is used to indicate the 

performance of the classifier. 
 
5.2. EXPERIMENTAL RESULTS 
 
For illustrative purposes, we chose the classical Support 

Vector Machine (SVM) [14] as the classifier for these 

experiments. Three sets of experiments are conducted by 

using features computed from i) the raw vibration signals, 

ii) 10 non-overlapping segments of 512 samples recon-

structed using 256 compressed sensed data (α = 0.5), and 

iii) 10 non-overlapping segments of 512 samples recon-

structed using 128 compressed sensed data samples (α = 

0.25). For each experiment, the hyper-parameters of the 
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SVMs are chosen using a logarithmic grid selection meth-

od with a range of gamma and C values.  
The overall classification results are presented in Ta-

ble 1 and some sample confusion matrices are shown in 

Table 2. From the results, we achieved 92.4% accuracy 

with  set at 0.5 and 84.6% accuracy when  is reduced to 

0.25. 
 

 SVM’s Hyper-
parameters 

Accuracy % 

Raw Vibration Gamma = 16 
C = 32 

98.9 
(1.2) 

Compressed Sensed  
(alpha = 0.5) 

Gamma = 46 
C = 35 

92.4 
(0.5) 

Compressed Sensed 
(alpha = 0.25) 

Gamma = 42  
C = 36 

84.6 
(3.4) 

Table 1. Overall classification accuracies and their asso-
ciated standard deviations (shown in brackets) 

6. DISCUSSION 
 

We observed that it was possible to achieve good per-

formance while reducing the bandwidth requirement by 

50% and 75%. However performance degradation is ob-

served, especially in the case of α = 0.25, 10% loss was 

observed in terms of classification accuracy. From analys-

ing the feature space for the three datasets as depicted in 

Fig. 3, we observed that the overlap among different con-

ditions increases as the value of α reduces. 
From empirical studies, we also noticed that the 

SampEn features require large sample size for stable com-

putation. Owing to page constraint, we did not present the 

results for the feature values computed using different 

segment size. It also appears that the higher order features 

are less stable for the reconstructed compressed sensed 

vibration signal, especially for lower ratio.  
There are several outstanding interesting issues re-

main to be investigated: 1) What is a good value of seg-

ment length for adequate reconstruction? In this work, we 

have only presented the results for n = 512. 2) What is the 

optimum number of segments required for stable features 

computation? We have used 10 segments in this work. 3) 

Do we need to compute features in the reconstructed do-

main? Would it be feasible to compute directly in the 

compressed domain? In our future works, we plan to take 

a closer look at these open issues.  

 
7. CONCLUSION 

 
We have demonstrated that it is possible to sample the 

vibration data of roller element bearings at less than the 

Nyquist rate and reconstruct the signal for fault classifica-

tion. For simplicity, we have opted for the entropic fea-

tures and empirical data shows that classification results 

suffer from a slight degradation but requires much less 

bandwidth.  

 
Predicted True Conditions class 

Conditions NO NW IR OR RE CA 
Precision 

(%) 
NO 160 0 0 0 0 0 100.0 
NW 0 156 0 0 0 7 95.7 
IR 0 0 160 0 0 0 100.0 
OR 0 0 0 160 0 0 100.0 
RE 0 0 0 0 160 0 100.0 
CA 0 4 0 0 0 153 97.5 

class recall 
(%) 

73.1 95.6 99.4 91.3 100.0 92.5 
 

(a) Raw Vibration Signal  
Predicted True Conditions class 

Conditions NO NW IR OR RE CA 
Precision 

(%) 
NO 117 0 0 14 0 0 89.3 
NW 0 153 0 0 0 9 94.4 
IR 0 0 159 0 0 0 100.0 
OR 42 0 0 146 0 3 76.4 
RE 0 0 1 0 160 0 99.4 
CA 1 7 0 0 0 148 94.9 

class recall 
(%) 

73.1 95.6 99.4 91.3 100.0 92.5 
 

(b) Compressed Sensed Data α = 0.5  
Predicted True Conditions class 

Conditions NO NW IR OR RE CA 
Precision 

(%) 
NO 110 0 0 13 0 8 84.0 
NW 0 149 0 2 0 6 95.0 
IR 0 0 158 0 7 0 95.8 
OR 24 1 0 116 0 20 72.0 
RE 0 0 2 0 153 0 98.7 
CA 26 10 0 29 0 126 66.0 

class recall 
(%) 

68.8 93.1 98.8 72.5 95.6 78.8 
 

(c) Compressed Sensed Data α = 0.25 

Table 2. Sample confusion matrix for the three scenarios 
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a) Original Vibration Data 

b) Compressed Data α = 0.5 

c) Compressed Data α = 0.25 

Fig. 3. A comparison of the three data sets in feature 
space. 
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