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ABSTRACT
We introduce an original algorithm to perform the joint eigen-

value decomposition of a set of real matrices. The proposed

algorithm is iterative but does not resort to any sweeping pro-

cedure such as classical Jacobi approaches. Instead we use a

first order approximation of the inverse of the matrix of eigen-

vectors and at each iteration the whole matrix of eigenvectors

is updated. This algorithm is called Joint eigenvalue Decom-

position using Taylor Expansion and has been designed in or-

der to decrease the overall numerical complexity of the pro-

cedure (which is a trade off between the number of iterations

and the cost of each iteration) while keeping the same level

of performances. Numerical comparisons with reference al-

gorithms show that this goal is achieved.

Index Terms— Joint eigenvalue decomposition, joint di-

agonalization, canonical polyadic decomposition, ICA.

1. INTRODUCTION

In this paper, we consider the Joint EigenValue Decompo-

sition (JEVD), also called joint diagonalization by similar-

ity. The principle of JEVD is to diagonalize a set of K non-

defective matrices, as the following way:

∀k = 1, ....,K M(k) = AD(k)A−1, (1)

where the matrix of eigenvectors A and the K diagonal ma-

trices D(k) are unknown. We only consider here the real case

for simplicity. Note that the matrix of eigenvectors A is es-

timated up to a permutation and scaling indeterminacy. This

limitation is inherent to the JEVD problem. The uniqueness

condition of the JEVD problem is given in [1]. Let the N×K
matrix

Ω =

⎛
⎜⎜⎝

D
(1)
11 · · · D

(K)
11

... · · · ...

D
(1)
NN · · · D

(K)
NN

⎞
⎟⎟⎠ (2)

be the matrix whose columns are the diagonals of each ma-

trix D(k). JEVD is unique if and only if the rows of Ω are

all distinct. The JEVD is useful in several contexts: direc-

tion of arrival estimation [2], joint angle-delay estimation

[3], multi-dimensional harmonic retrieval [4], Canonical

Polyadic Decomposition (CPD) of tensors [1], [5], [6], and

Independent Component Analysis (ICA) [7], [8], [9], [10],

[11]. Note that this problem is different than classical Joint

Diagonalization by Congruence (JDC), for which the right

matrix A−1 is replaced by At [12], [13], [14]. Of course, if

A is orthogonal JEVD and JDC problems are equivalent.

JEVD algorithms usually resort of a Jacobi-like procedure

using different matrix decompositions such as QR, LU and

polar factorizations. Most algorithms are based on the polar

decomposition: “sh-rt” algorithm [15] allows to diagonalize

the K matrices correctly but it is not as good regarding the

estimation of the matrix of eigenvectors, JUST algorithm

[16] can sometimes improves these results. Before going

further with this short JEVD historic, we would like to insist

here that an important application of JEVD is the CPD of

multiway arrays (also called PARAFAC). Indeed the CPD

can be rewritten as a JEVD problem and this approach has

given birth to very fast CPD algorithms such as CFS [5] and

DIAG [6]. Thereby, in order to accentuate this strong point,

it was important to develop fast JEVD algorithms. In this

context, JDTM algorithm [6], still based on polar decom-

position, provides satisfying results in most situations and

requires only few iterations to converge. However it keeps

a high computational cost per iteration. Conversely, JET-O

algorithm [17], [18] based on the LU decomposition has low

computational cost per iteration but it can require many more

iterations to converge.

Therefore, we propose here a new approach able to decrease

the overall numerical complexity of the process by keeping

low both the cost per iteration and the average number of

iterations to reach the convergence and the same performance

level that JET-O and JDTM. This algorithm is called Joint

eigenvalues Decomposition based on a Taylor Expansion

(JDTE) and has been inspired by the algorithm H-NOODLES

for JDC [19].

2. NOTATIONS

In this paper scalars are denoted by a lower case (a), vectors

by a lower case boldface (a) and matrices by an upper case

boldface (A). The i−th element of the vector a is denoted by

ai and the (i, j)− th element of a matrix A is denoted by Aij .

The identity matrix is denoted by I. The operator Diag{·}
represents the diagonal matrix built from the diagonal of the
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matrix argument, the operator ZDiag{·} sets to zero the diag-

onal of the matrix argument and ||.|| is Frobenius norm of the

argument matrix.

3. A FAST METHOD FOR JEVD BASED ON TAYLOR
EXPANSION

Here, we consider that all matrices are of size N × N . To

solve our problem we have to find an estimated matrix Â such

that, for all matrices M(k), Â
−1

M(k)Â are as diagonal as pos-

sible. The matrix Â is estimated iteratively by successive up-

dates. At each iteration i a matrix Bi is computed in order

to decrease a diagonalization criterion and the matrix set is

updated as

∀i = 1, ...., S, ∀k = 1, ....,K T(k)
i+1 = B−1

i T(k)
i Bi, (3)

with T(k)
1 = M(k), and S the number of iterations to reach

the convergence. Thereby, if S iterations allow to achieve the

JEVD, Â will be equal to
∏S

i=1 Bi and all the T(k)
S matrices

are diagonal.

To process, a classical approach is to reduce at each iteration

the following criterion based on a quadratic measure of diag-

onality:

C(Bi) =
K∑

k=1

||ZDiag{B−1
i T(k)

i Bi}||2. (4)

As said before, at each iteration we have to determine the N2

elements of the matrix Bi. Here, we simply decompose Bi as

follow:

Bi = (I + Zi), (5)

where Zi is equal to ZDiag{Bi}. Hence, at each iteration the

updated data matrices become:

∀k = 1, ....,K T(k)
i+1 = (I + Zi)

−1T(k)
i (I + Zi), (6)

so that the criterion (4) depends only on Zi and can be written

as:

C(Bi) = C̃(Zi) =
K∑

k=1

||ZDiag{(I + Zi)
−1T(k)

i (I + Zi)}||2.
(7)

In the following, to simplify the notations, we drop the index

i.
To solve this problem we aim to minimize the previous cri-

terion, more precisely an approximation of this criterion. In-

deed, it is compulsory to approximate our criterion if we want

work on an analytic form of Z. For this purpose, we assume

that we are close to the solution and so that ||Z|| � 1 then we

compute its first order Taylor expansion which yields:

(I + Z)−1T(k)(I + Z) ≈ (I − Z)T(k)(I + Z)

≈ T(k) − ZT(k) + T(k)Z − ZT(k)Z

≈ T(k) − ZT(k) + T(k)Z. (8)

Moreover each matrix T(k) can be decomposed as

T(k) = Λ(k) + O(k), (9)

where Λ(k) = Diag{T(k)} and O(k) = ZDiag{T(k)}. Once

again, considering that we are close to the solution, all the

T(k) matrices are almost diagonal and ||O(k)|| � 1. This

second approximation gives:

T(k)−ZT(k)+T(k)Z ≈ Λ(k)+O(k)−ZΛ(k)+Λ(k)Z (10)

and thus, we finally resort to the following approximated

JEVD criterion:

Ca(Z) =
K∑

k=1

||ZDiag{O(k) − ZΛ(k) +Λ(k)Z}||2

≈ C̃(Z). (11)

Now, developing (11) yields:

Ca(Z) =
K∑

k=1

N∑
m,n=1
m �=n

(O(k)
mn + ZmnΛ

(k)
mm − ZmnΛ

(k)
nn )

2

=
N∑

m,n=1
m �=n

f(Zmn), (12)

where

f(Zmn) =

K∑
k=1

(O(k)
mn + (Λk

mm − Λk
nn)Zmn)

2. (13)

Since for all m, n, f(Zmn) is non-negative, minimizing Ca(Z)
is equivalent to minimize all the f(Zmn) independently. In

order to find the elements of the updating matrix Z, we look

for the values of Zmn which annul the derivative:

∀m,n m �= n,

∂f(Zmn)

∂Zmn
= 2

K∑
k=1

(O(k)
mn + (Λ(k)

mm − Λ(k)
nn )Zmn)(Λ

(k)
mm − Λ(k)

nn ).

(14)

Finally, we deduce the analytic expression of Zmn:

∀m,n m �= n,Zmn = −
∑K

k=1 O
(k)
mn(Λ

(k)
mm − Λ

(k)
nn )∑K

k=1(Λ
(k)
mm − Λ

(k)
nn )2

.

(15)
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Algorithm 1 The JDTE algorithm

Define a stopping criterion crit and a maximal number of

iterations Smax;

Initialize Â;

i = 1
while crit is false and i ≤ Smax do

for m = 1 to N do
for n = 1 to N do

if m �= n then
Compute Zmn using (15);

end if
end for

end for
Compute B = I+ Z ;

Compute B−1;

for k = 1 to K do
T(k) ← B−1T(k)B;

end for
Â ← ÂB;

i = i+ 1;

update crit
end while

Algorithm 1 gives an algorithmic description of the method.

Note that here, one iteration consists in only one update of

matrices Â and T(k). Several stopping criteria can be used,

for our simulations, algorithm are stopped as soon as the fol-

lowing condition is fulfilled:

|C(Bi)− C(Bi−1)|
C(Bi−1)

≤ ε. (16)

4. NUMERICAL COMPLEXITIES OF JEVD
ALGORITHMS

We define here the numerical complexity (denoted Γ) of an

iterative algorithm as the minimal number of multiplications

computed by this algorithm during each iteration. Accord-

ing to this definition the numerical complexity of the JDTE

algorithm is given by:

Γ{JDTE} � (N(N − 1)(2K +1)+ 2N3 +2KN3), (17)

this value has to be compared to the numerical complexities

of reference JEVD algorithms. Hence we have:

Γ{JET-O} � KN(N − 1)(N + 7)/6 +N2(N + 1)/2

+ (5K + 4KN +N/3)(N − 1)N/2, (18)

Γ{sh-rt} � (3K + 16KN + 14N)(N − 1)N/2, (19)

Γ{JDTM} � (6K + 16KN + 8N)(N − 1)N/2, (20)

Γ{JUST} � (32− 6K + 22KN + 8N)(N − 1)N/2.
(21)

Costs per iteration are thus dominated by a term in αKN3,

whatever the algorithm, and only the value of α depends on

the considered algorithm. It then clearly appears that only

JET-O can compete with JDTE in terms of cost per itera-

tion. However the average number of required iterations to

reach the stopping criterion varies from one algorithm to an

other. It’s why, we define the total numerical complexity as

Γtot = SΓ. Therefore total numerical complexities of the dif-

ferent algorithms have to be compared empirically by means

of numerical simulations.

5. NUMERICAL SIMULATIONS

Matrix sets to be diagonalized are created as follow: for given

values of K and N we randomly draw (according to a stan-

dard normal distribution) a set of K diagonal matrices and a

squared matrix A of size N . Then we compute the K matrices

M(k) as:

∀k = 1, ....,K M(k) =
AD(k)A−1

‖AD(k)A−1‖ + σ
E(k)

‖E(k)‖ . (22)

Where Ek models a Gaussian random noise. Parameter σ al-

lows to regulate the noise power and obtain the desired Sig-

nal to Noise Ratio (SNR) value which is then defined as :

−20 log10(σ).
In order to validate the proposed approach, we have com-

pared the performance of JDTE algorithm with those of JUST,

JDTM and JET-O according two different scenarios. For each

simulation i.e. each time we vary a simulation parameter, 100

Monte-Carlo runs are performed. For each MC run a new

random matrix set is built and the three algorithms are ap-

plied to this new set. The same stopping criterion (16) is used

for the four algorithms wiht ε = 10−6. All the algorithms

are initialized with the identity matrix. At the end of each run

two indicators are computed for each algorithm along with the

numerical complexities. Our first indicator quantifies the rel-

ative deviation between the eigenvalues estimated by a JEVD

algorithm and the actual eigenvalues of matrices M(k). In the

same way, our second indicator quantifies the relative devi-

ation between the estimated matrix of eigenvectors and the

actual one. These indicators are denoted rD and rA respec-

tively and are computed as follow, after removing scaling and

permutation indeterminacy:

rD =
1

K

K∑
k=1

‖d(k) − d̂
(k)‖

‖d(k)‖ , (23)

rA =
‖A − Â‖
‖A‖ , (24)

where d(k) and d̂
(k)

are vectors containing actual and esti-

mated eigenvalues of M(k) respectively. Finally we resort to

three criteria in order to assess algorithm performances: the
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Fig. 1. Evolution of the three comparison criteria as a function of the SNR value (in dB) for the JDTM (dash-dot line), JET-

O(dash line), JUST(dot line) algorithms and the proposed JDTE (solid line) method for 20 matrices of size 5× 5.
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Fig. 2. Evolution of the three comparison criteria as a function of the size of the number of matrices to be jointly diagonalized

for the JDTM (dash-dot line), JET-O(dash line), JUST(dot line) algorithms and the proposed JDTE (solid line) method for

matrices of size 5× 5 and a SNR of 50 dB.

median values of rD and rA and the average value of Γtot

over the 100 MC runs.

For our first scenario, we consider sets of 20 matrices of size

5 and we vary the SNR value from 10 to 100. Evolutions of

the three comparison criteria as a function of the SNR are

reported on figures 1(a), 1(b) and 1(c). It can be seen that the

JDTE, JET-O and JDTM algorithms provide very similar per-

formances in terms of estimation precision of the eigenvalues

and of the matrix of eigenvectors while JUST is less efficient.

As expected, the numerical complexity criterion allows to

discriminate between these three algorithms. We observe

that for the lowest SNR values JET-O is the less costly algo-

rithm respectively followed by JDTE and JDTM. Note that if

we consider that the median values of rA must be lower than

10−1 no algorithm gives satisfying results under 30 dB. Then,

above 40 dB, JDTE becomes clearly the less costly solution

and this tendency increases with the SNR value.

The second scenario is performed in the same way but this

time, we vary the size of the matrix sets from 2 to 50 while

the SNR and the matrix size are set to 50 dB and 5 respec-

tively. Results are plotted on figures 2(a), 2(b) and 2(c). Once

again the diagonalization criterion does not allow to decide

between JDTE, JDTM and JET-O and although JET-O al-

gorithm provides now the best estimation of the matrix of

eigenvectors, performances remains very close. Conversely,

looking at the Γtot criterion, it appears clearly that if we are

looking for rapidity JDTE is a recommended choice. Indeed

it is consistently less costly than its competitors and it is

noteworthy that the gap increases linearly with the size of

the matrix set. This makes JDTE a suitable solution for the

CP decomposition since in most CPD application the size of

the matrix set can be very large. More precisely, the ratios

Γtot{JDTM}/Γtot{JDTE}, Γtot{JET-O}/Γtot{JDTE} and

Γtot{JUST}/Γtot{JDTE} remains stable around 1.7, 1.4 and

3.4 respectively. In conclusion, numerical simulations, we

can show that the proposed method is the least costly while

keeping the same performances as JDTM and JET-O.

6. CONCLUSION

We have introduced here a new algorithm to compute the

JEVD of a set of real matrices. Contrary to classical ap-
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proaches our algorithm does not resort to any sweeping pro-

cedure so that at each iteration all the element of the ma-

trix of eigenvectors are directly computed. This approach is

achieved by using a Taylor expansion of the diagonalization

criterion and allows significantly to reduce the cost per itera-

tion. Thus, we have shown that the numerical complexity of

one JDTE iteration is much lower than the one of most other

JEVD algorithms. Numerical simulations confirm that JDTE

clearly appears as the quickest algorithm in many practical sit-

uations, notably when the signal to noise ratio is not too low.

Moreover, it offers similar performances than reference JEVD

algorithms in term of estimation precision of eigenvectors and

eigenvalues. This makes JDTE a good candidate to perform

the JEVD step included in recent fast CPD algorithms.
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