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ABSTRACT

A new multifractal formalism based on the crossing-tree
for H-sssi processes was recently introduced [1, 2]. The
crossing-tree performs an ad-hoc decomposition of a signal
based on its fluctuations, and thus represents a natural tool for
the multifractal analysis of time series. The estimation of the
Hausdorff spectrum happens in the context of a multifractal
formalism, where the spectrum is obtained from a transform
of a partition function. In this contribution, we introduce a
new crossing-tree partition function, which differs from the
original one presented in [2]. We show numerically that the
new partition function improves the stability of the estima-
tion in many cases, compared with the original crossing-tree
partition function. Estimation is further compared with state-
of-the-art techniques, including wavelet and wavelet leaders.

Index Terms— H-sssi processes, crossing tree, multi-
fractal formalism, adaptative decomposition, wavelets

1. INTRODUCTION

Motivations. Fractal and multifractal signals often occur in
so-called complex systems (systems with a huge number of
degrees of freedom in nonlinear interaction) as different as
turbulent fluids, stock markets or the internet. An important
concept underlying these signals is scale invariance: the laws
that underpin the construction of the processes are the same at
all scales. This has naturally led to the use of multiscale tools
to analyse such signals, among which the wavelet machinary
is the best known, and provide today’s state-of-the art tech-
niques for fractal and multifractal signal analysis.

In the wavelet paradigm, the notion of scale is introduced
in the index set (time for signals, space for images). The no-
tion of scale can also be defined in the amplitude space of
the signal. The crossing-tree decomposition then provides the
corresponding multiscale decomposition: at a given resolu-
tion, the amplitude set is cut into equal length intervals, the
bound of which define the crossing levels. A crossing is de-
fined as the path of the signal between two consecutive strictly
different crossing levels. At a given resolution, the nodes of
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the tree contain the consecutive crossings. A multiscale rep-
resentation is then provided by iterating the process on all
crossings, by studying subcrossings at a finer resolution. To
present the notation, we will formalize this later in this intro-
duction. A main difference between wavelet decomposition
and the crossing tree is the fact that the latter is an adaptive
technique.

The crossing tree was introduced to generalize the mid-
point deplacement method to construct the standard Brownian
motion. In [3] it was applied to self-similar processes, to test
for self-similarity and stationary increments, and to obtain an
asymptotically consistent estimator of the Holder exponent.
In [4] the crossing tree was used to estimate a time-change of
a self-similar process, and in [5], it was used to characterise
and test if a process is a continuous local martingale. Later,
it has been the basis to construct a class of monofractal and
multifractal processes, see [6, 7]. This lead us to invert the
point of view and use the crossing tree as an analysis tool for
fractal and multifractal signals. Indeed, the crossing tree is a
very general concept and can easily be computed on real data.

In [1, 2] we showed how to use the crossing duration to
estimate the Holder exponent for several classes of monofrac-
tal signals. To do so we introduced a partition function using
the crossing durations. A theoretical justification for it re-
lies on [6, 7] where multifractal formalism is proved for the
so-called multifractal embedded branching processes (MEBP,
processes that are constructed via the crossing tree). As many
methods, the partition function suffers a lack of statistics for
negative powers. The aim of the present paper is to illustrate
how an easy modification of the partition function allows bet-
ter estimation for negative powers.

The remaining of the paper is organized as follows. We
continue this introduction by presenting the crossing tree de-
composition and the class of signals we study. Section 2 will
present the partition functions we use to estimate the Holder
exponents, whereas section 3 will present the practical set up
as well as simulations. One aim is to compare the crossing
tree approach with the state-of-the-art provided by wavelet
and wavelet leaders.

The crossing tree. We consider a process X : RT — R.
Without loss of generality, we assume X (0) = 0 almost
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Fig. 1. Formation of the crossing tree from a sample path, and
crossing tree notation. Variables are defined in the text.

surely (a.s.) and we further suppose it has continuous sample
paths (a.s.). At a resolution m € Z, the vertical axis is cut
into levels of size 2™, and a crossing at level m is defined
as the path between two successive different crossing levels.
The first crossing starts at ¢ = 0 and is defined as the path
betwen ¢ = 0 and the first time the signal crosses either 2™
or —2™. Each crossing is characterized by two parameters:
its duration and its direction. The level-m crossing times 77
are defined as

Ty, = int{t > TP | X (1) € 272, X () # X(T)},

where TJ" = 0 and 2™Z = {z | x = 2™afora € Z}.
Thus, the k-th level-m (equivalently scale 2™) crossing
Crr o= {t X)) | T;7, <t < Ty} is the bit of sam-
ple path from 77" ; to I}"". Now the crossing tree is created
by iterating the previous construction. Each crossing of size
2™ is decomposed into a sequence of crossings of size 2™ 1,
The nodes of the crossing tree are crossings and the offspring
of any given crossing is the corresponding set of subcrossings
at the level below. An example of a crossing tree and the
main notation are given in Figure 1. The crossing-tree can
easily be computed for irregularly time-sampled signals, and
as such the formalism developed later is adapted to this kind
of data.

To code nodes in the tree we use the address space I =
Uz‘;oNk, where N” is the set of words of k integers and NO =
(). For the sake of simplicity, the root of the tree and first
crossing is supposed to go from 0 to #1. It is labelled () and
its subcrossings (each of size 1/2) are numbered from 1 to Zj.
The subcrossings of a crossing i = 4yi3 - - -1, € N are then
labelled i1, ... ,iZ;, where Z; is the number of subcrossings
of i and ij = 41ig---1,. It is easy to show that Z; is an
even integer larger or equal to 2. We note as INV,, the size of
generation n. The second main parameter of a crossing i is
its type, either up or down, which we denote by ;. The other
parameter W; is the duration of crossing i. The sample path
is completely described by {(o;, W;) : i€ I}.
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Some scale invariant processes. X (¢) is said to be a
self-similar process if there exists an H € (0, 1) such
that X(ct) = c”X(t) holds for all ¢ > 0 (in the finite-
dimensional distribution sense). If in addition the process
X (t) has stationary increments, then X (¢) is said to be H-
sssi.

The most-studied H-sssi processes are fractional Brown-
ian motions (fBm), the only self-similar Gaussian processes
with stationary increments. Their sample paths are continu-
ous (a.s.) but non differentiable (a.s.). However, they have
a degree of regularity and possess H as Holder exponent al-
most everywhere. A nonGaussian generalization of fBm is
provided by Hermite processes.

Let B(u) denote a Brownian motion. A Hermite process
of order k is defined as

t k
7{’}{(75):// TTGs - w) sV | doaB(u),
Rk Jo .
Jj=1

where dB(u) = dB(uq)...dB(ug), for k > 1, with H €
(1/2, 1), and 24 = max(0, ). The case k = 1 corresponds
to the case of an fBm. H%(¢) is usually referred to as the
Rosenblatt process.

The Weierstrass function is defined as

Wy (t) = Z )\akH(cos(gok) — cos(2mALt + @k)) ,
kezZ

where H stands for the Holder exponent and )\ is a funda-
mental harmonic. The definition is made to impose Wy (0) =
0. The Weierstrass function exhibits discrete scale invariance
(DSI), with Wy (Aot) = AWy (¢), in distribution. We con-
sider here a stochastic version of this function, obtained by
choosing the phases {¢y } ez as a sequence of i.i.d. variables
uniformly distributed over [0, 27].

2. PARTITION FUNCTIONS

The estimation of the spectrum of singularities D(h), defined
as the Hausdorff dimension of the set of points with given
Holder regularity h, typically occurs in the context of the mul-
tifractal formalism. The formalism relates the spectrum to a
partition function {(g) via the (Legendre) transform

D(h) = ;gﬂg{l —((q) + hq}.

This section reviews wavelet-based partition functions first,
before introducing crossing-tree partition functions.

2.1. Wavelet-based partition functions

We first recall the wavelet decomposition of a signal X (¢).
Let ) be the mother wavelet. Any square integrable signal
can be decomposed as

X(t) =Y canto(2't—k),

n,k€ZL
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where
(2"t — k)dt .

an:2n/X

We denote by A, = [k27", (k + 1)27") a dyadic cube at
scale n, with k € Z. The Wavelet based structure function of
X is defined from the ¢-th moment of the wavelet coefficients,

—2 nZ|an‘

where the sum is taken over all dyadic cubes A,, ;, with non
vanishing coefficients. The wavelet partition function is then

T log Swe(q,n)
Cuelq) = lﬁglfg (10g2n ;o qgeR, (D)

S’LUC q7

which leads to the multifractal formalism [8]

DX(h) = ;gﬂf{{l - ch(Q) + hQ} . (2)
The wavelet-based partition function (1) is known to be unsta-
ble for negative exponents, corresponding to ¢ < 0. Indeed,
wavelet coefficients can be arbitrary small, and a small error
in their estimation can be multiplied when raised to a negative
power.

To address this issue (amongst others), the wavelet leaders
formalism was introduced [9]. Put 3\, 1, = A k-1 U A U
An,k+1, Which corresponds to the cube centered around A, i,
three times wider. The wavelet leaders d,, ;, of a bounded
function X (¢) are defined as

dn e = sup |em.il -

{mﬂ: ‘ /\7n,ic3)\n,k}

It is then natural to introduce the wavelet leader structure
function
=27" Z dnil*

where the sum is taken over all non vanishing wavelet leader
coefficients. The scaling function is

Cwt(q) = liminf <1°gs’”(q’")> . geR, (3

n—-+o0 log2—"

S’wl qa

which leads to the multifractal formalism

Dx(h) = inf {1 — Cui(q) + hq} . “4)
q€R

2.2. Crossing-tree partition functions

A new formalism for the study of H-sssi processes was re-
cently introduced [1, 2]. The formalism relates the spectrum
of singularities to a partition function computed from multi
resolution quantities obtained from the crossing-tree of a sig-
nal.

Given t, let i € N be such that for each n, the size
27™ crossing that contains ¢ is i|n. Then, our analogue of the
multiresolution quantity is the crossing duration Wj,,. We
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say that the process X (t) possesses scaling properties if time
averages of the crossing durations follow a power law be-
haviour,

1 —n
Ser(nq) = 5= D [Wapa|* ~ C27" @ (5)
n

)

as n — oo, where the sum is taken over all crossings of
size 27™. We call S.(n, q) the structure function and (.; the
crossing tree partition function. The partition function can be
obtained from the structure function as a limit,

f gSct(n Q) .

6
—nlog 2 ©

Cet(g) = limin
n—oo

The crossing-tree partition function (6) was first intro-
duced to obtain a theoretical expression of the Hausdorff
spectrum of a class of processes called Multifractal Embed-
ded Branching Processes (MEBP), see [6, 7]. An MEBP
process X can be represented as the composition of a pro-
cess Y with constant modulus of continuity, and the inverse
of an increasing process M, so that it can be written as
X =Y o M~!. The increasing process M is the integral
of a multiplicative cascade defined on the boundary of the
crossing tree of Y. The multifractal analysis of M requires
deducing the local Holder exponent at every point of its sup-
port from a discretised version of it. To do so, the support of
a multifractal measure is typical divided into dyadic cubes,
and a structure function is defined from the empirical g-th
moments of measures of cubes 3 times wider than the origi-
nal partition, see e.g. Section 2 in [9]. This methodology was
adapted in [7] to perform the multifractal analysis of M. The
analysis performed there requires the introduction of a novel
partition function constructed on a random grid adapted to the
process. The new partition function is defined in terms of the
g-th moment of the sum of 3 consecutive crossing durations
(instead of 3 consecutive dyadic cubes), and constitutes the
starting point of the present study.

Let ijn— and i|n+ denote respectively the left and right
neighbours of i|n. The corresponding crossing durations are
denoted Wj,,— and Wj),,4.. The discussion above motivates
the definition of a new crossing-tree structure function,

1
Set(n,q) = N Z Wipn— + Wi + Wipng |7, (D

i|n
and its associated partition function

log 'Sct (nv Q)

—nlog 2 ®

Net(q) = lim inf
n—oo
The introduction of the right and left neighbours in the defini-
tion of S.¢(n, g) takes cares of problems that may arise when
the local Holder exponent is discretised at time ¢, when ¢ is a
crossing time, since ¢ corresponds in that case to one of the
endpoints of the crossing durations.
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Wavelet leaders were introduced to address the flaws of
a multifractal analysis based directly on wavelet coefficients.
In particular, wavelet leaders are known to estimate the spec-
trum of singularities with greater accuracy for ¢ < 0. They
are defined from the supremum of wavelet coefficients over
dyadic cubes 3 times larger than the original dyadic partition,
which is the key to their success. We thus expect that defining
a structure function from of the ¢g-th moments of statistics de-
fined on 3 consecutive intervals will also improve the stability
properties of the structure function for ¢ < 0, compared to the
original Sc(n, q). The numerical work presented in the next
section supports this claim.

Heuristic arguments presented in [2] lead to conjecture
that for self-similar processes, the multifractal spectrum is re-
lated to the crossing-tree partition function via the transform

Gaula) = inf{(q+ 1)/l =D/} ©)

For monofractal processes with Holder exponent H, one gets
Cet(q) = g/H. A similar reasoning yields 7.,(¢) = ¢/H for
this class of processes. This conjecture, proved for the Brow-
nian motion, remains open. The numerical work presented in
the next section supports this conjecture. The expression of
the crossing-tree partition functions for monofractal processes
should be compared with wavelet-based techniques, where
we directly get from (2) and (4) that (,.(q) = Cuwi(q) = qH.
The partition function is still linear in g, but the slope is in-
verted.

3. NUMERICAL WORK

For each process defined in the introduction, we compare the
performance of the two crossing-tree partition functions. Es-
timation based on wavelet coefficients is also presented. The
partition functions are estimated from an average of 1000 re-
alizations of 2'® sample points each. The wavelet partitions
functions are estimated using Daubechies’ wavelets with 3
vanishing moments, from scale 2% to 22 using Matlab rou-
tines from [10, 11]. The crossing tree partition function is
estimated from scale 22 to 2°. The range of scales differs
for wavelet methods and the crossing tree, since they are cal-
culated differently: the scales chosen to analyse the crossing
tree are computed from the spatial fluctuations of the signal.
We focus our attention to the estimation of the negative
moments, which is the main objective of the present contribu-
tion. Figure 2 and 3 display the estimation of .+(q), 1ct(q)
and Cye(q), Cuwi(q) for g varying between -10 and 0. It is clear
from Figure 3 that the partition function based on wavelet co-
efficients fails to work for negative gs, while the three other
methods return stable results. In particular, it can be seen from
Figure 2 that an estimation based on the crossing tree returns
a good estimation for negative ¢s, and the estimation bias is
further reduced when considering 7.+(q) instead of (.+(q). In
most cases, the bias almost vanishes, while wavelet leaders re-
turn a small bias in some cases. The estimation was repeated
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21 ‘Rosenblatt

Fig. 2. Estimation of the partition function for ¢ varying be-
tween -10 and 0 using C(q) (o) and n¢;(q) (OJ). The dashed
line is the theoretical line ¢/H. From top to bottom, left to
right, fractional Brownian motion, Hermite with £ = 2 and 3,
and Weierstrass function, with H = 0.6.
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Fig. 3. Estimation of the partition function using wavelet lead-
ers (o) and wavelet coefficients (LJ).

for other values of H > 0.5, and the modified formalism
systematically improves the estimation compared to the orig-
inal crossing-tree partition function. Estimation for processes
with H < 0.5 remains however challenging with the crossing
tree, since the estimation of the crossing tree is all the more
difficult as the process is rough (crossings are missed).

Following the seminal work of Castaing [12], we consid-
ered in [2] a polynomial expansion of the partition function,
and we defined an estimator of H from the first coefficient
in the expansion, estimated from the cumulant of the crossing
durations. We repeated the same procedure for 7.;(¢), and we
found that the performances of the estimators based on 7).¢(q)
and (.;(q) are comparable in most cases.
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4. CONCLUDING REMARKS

The present contribution extends earlier work on the crossing-
tree, by introducing a novel crossing-tree partition function.
We showed numerically that a simple modification of the
crossing-tree partition function presented in [1, 2] allows a
more stable estimation for negative powers.

This work further raises many challenges (both theoreti-
cally and numerically) and open conjectures. The first step
being formally proving that n.:(q¢) = ¢/H for monofractal
H -sssi processes, before proving (9) in all generality. Estima-
tion for rougher processes (H < 0.5) should also be further
investigated, since the estimation of the crossing tree is dete-
riorated in this case. Finally, the crossing tree is defined so
far only for one-dimensional processes. Extending its defini-
tion to two-dimensional processes might lead to a new tool to
analyse images, and in particular to perform their multifractal
analysis.
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