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ABSTRACT

Segmenting ultrasound images is a difficult task due to low
contrast and speckle. Gradient based deformable models and
classic region based active contours fail to correctly delineate
biological structures. This paper goes beyond existing global
and local statistics based models by proposing an active con-
tour founded on multifractal properties. It consists of mini-
mizing an energy functional based on the quadratic form of
the log normal multiplicative cascade scaling law. The as-
sociated Euler equation is derived using shape derivation. A
level-set method is used to solve the resulting partial deriva-
tive evolution equation. The algorithm is successfully applied
to synthetic and real data. Results show that the method can
be used to automatically delineate skin melanoma regions.

Index Terms— Multifractal, Segmentation, Active Con-
tour, Multiplicative Cascade, Ultrasound images.

1. INTRODUCTION

Ultrasound medical imaging is an affordable and non inva-
sive modality that has multiple clinical applications. Its re-
cent technical developments make it a valid approach to as-
sess skin tumors. However, its clinical exploitation in derma-
tology requires robust image processing algorithms to over-
come their complex nature, especially due to speckle. Several
segmentation techniques have been proposed in the literature
to deal with this modality [21]. Methods based on active con-
tours have received a great deal of investigations [20]. The use
of global parametric statistics in active contours has started
in [4] with Gaussian distribution, Rayleigh in [25], and gener-
alized to the exponential distributions family in [15, 22]. Non
parametric statics have also been used first in [13] and since
then in various works (see [23, 29] and references therein).
These approches have difficulty taking into consideration the
local heterogeneous nature of speckle images. Local para-
metric statistics were introduced in [5,14] to deal with hetero-
geneity and used in [11,17,18] among others. The rational for
using such models stems from the fact that local region stat-
ics relax the strong constraint of i.i.d. pixels in global statics.
However these techniques are very sensitive to noise. Another
way of dealing with the limitations of global statics consists

of using non-local active contours [12, 19]. Joint local and
global statistics have been combined in [26,27]. These works
pose the problem of local scale selection that has been tack-
led in [2, 3, 24]. In this paper, we propose a model that, in a
sense, unifies the use of global and local statics while deal-
ing implicitly with the selection of the optimal spatial scale.
This is achieved by developing a region-based active con-
tour whose energy functional depends on multifractal prop-
erties estimated using a multiresolution framework. The mul-
tifractal properties are derived from a multiplicative cascade
stochastic model that captures the statistics of the pixels and
their inherent dependency. Fractal properties have already
been used for medical image segmentation and characteriza-
tion outside of the active contours framework [1, 8, 9, 16, 30].
However, in [6] it has been reported that ultrasound signals
backscattered from the skin exhibit characteristic multifrac-
tal properties. We have previously shown that these proper-
ties can be explained by a lognormal multiplicative cascade
model [7]. This paper builds on this result, and develops a
multifractal active contour that separates regions in high fre-
quency ultrasound images based on the distance between their
scaling functions.
The remainder of the paper is structured as follows. Section
2 formulates the segmentation problem. The proposed multi-
fractal active contour is detailed in Section 3, where the multi-
fractal energy functional is established and the associated Eu-
ler equation is derived following the shape derivation scheme
developed in [10]. Experiments on simulated and real data
are presented in Section 4. Conclusions are finally reported
in Section 5.

2. PROBLEM STATEMENT

As mentioned above, it has been shown in [7] that the multi-
plicative cascade with log normal multipliers is an appropriate
stochastic model to describe the scale invariance of ultrasound
signals backscattered from skin tissues. This model has the
important characteristics of incorporating both the statistical
properties of pixels and their inherent dependency. Consider-
ing the 3D image as a piecewise constant multiplicative log-
normal cascade stationary process, every 3D region R can be
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characterized by its speckle scaling function τR(q):

τR(q) =
σ2

R

2
q2 − µRq; τR(0) = τR(1) = 0 (1)

with q the statistical order of the moments (q ∈ [−2, 2]) and
µR and σR the mean and variance of the lognormal cascade
multipliers for R. In this work, we aim at segmenting a le-
sion located within a region representing the skin dermis. Ac-
cordingly, we consider the partition of the ultrasound image
domain Ω into Ωin and Ωout produced by a surface Γ. Each
partition would have a speckle scaling function τΩ.(q).

3. PROPOSED METHOD

High Frequency Ultrasound (HFUS) data can well be de-
scribed by a log-normal multiplicative cascade stochastic
model [7]. Following this model, a homogenous region R
can be characterized by the parameters µR and σ2

R
:

µR = h(R)
0 log(2) (2)

σ2
R = (h(R)

qmax − h(R)
qmin)log(2) (3)

where h(R)
q is the Holder exponent of order q for the region R.

Following [28], h(R)
q can be directly estimated from multiple

scale wavelet coefficients as follows:

h(R)
q =

J∑
j=1

ωj

∫∫∫
R

Tj(x, y, z)
qlog2(Tj(x, y, z))∫∫∫

R

Tj(x, y, z)qdxdydz
dxdydz (4)

where ωj are weights estimated according to the regression
method described in [28] and Tj(x, y, z) is the wavelet coef-
ficient at (x, y, z) for the scale j. For simplicity, x will denote
the coordinates (x, y, z) and dx denotes dxdydz.

3.1. Energy functional

The segmentation problem is formulated as the search for
the partition that maximizes the distance between τΩin

(q) and
τΩout(q). This distance is measured using the Earth Mover’s
Distance (EMD). The functional to optimize is:

J(Ω) =

2∑
q=−2

|τΩin (q)− τΩout (q)| (5)

By replacing eq.(4) in (2) and (3) and those in (5), and intro-
ducing a pseudo-time t, we obtain

J(Ω, t) =

2∑
q=−2

∣∣∣∣∣∣∣
J∑

j=1

ωj

∫∫∫
Ωout(t)

kout(x, q, j)dx +

∫∫∫
Ωin(t)

kin(x, q, j)dx


∣∣∣∣∣∣∣

where

kout(x, q, j) =
qlog(2)log2(Tj(x))

[
∫∫∫

Ωout(t)

dx]
2 − q2log(2)Tj(x)qmaxlog2(Tj(x))∫∫∫

Ωout(t)

Tj(x)qmaxdx

+
q2log(2)Tj(x)qminlog2(Tj(x))∫∫∫

Ωout(t)

Tj(x)qmindx

kin(x, q, j) = −qlog(2)log2(Tj(x))

[
∫∫∫
Ωin(t)

dx]
2 +

q2log(2)Tj(x)qmaxlog2(Tj(x))∫∫∫
Ωin(t)

Tj(x)qmaxdx

− q2log(2)Tj(x)qminlog2(Tj(x))∫∫∫
Ωin(t)

Tj(x)qmindx

where
∫∫∫
Ω.(t)

dx represents the number of pixels in the region

Ωin(t). Let E(Ω, q, j, t) be

E(Ω, q, j, t) =

∫∫∫
Ωout(t)

kout(x, q, j)dx +

∫∫∫
Ωin(t)

kin(x, q, j)dx

The functional E(Ω, q, j, t) corresponds to the scale j and
the order q. We can then write the global functional J(Ω, t)
as a function of this inner functional E(Ω, q, j, t) :

J(Ω, t) =

2∑
q=−2

∣∣∣∣∣
J∑

j=1

ωj [E(Ω, q, j, t)]

∣∣∣∣∣ . (6)

3.2. Shape Derivation

In order to establish the evolution equation of the curve for
this functional, we need to derive the expression of the flow
by calculating the derivative dJ(Ω, t)/dt . For this purpose,
we are first interested in dE(Ω, q, j, t)/dt. This term has the
required form to allow the application of the shape derivation
1.

∂E(Ω, q, j, t)

∂t
=

∫
Γ(t)

[kout(x, q, j, t)− kin(x, q, j, t)] (~V . ~N)ds

+

∫∫∫
Ωin

∂kin(x, q, j, t)
∂t

dx

+

∫∫∫
Ωout(t)

∂kout(x, q, j, t)
∂t

dx (7)

where ~V is a vector field that defines the direction of the
transformation of the domain depending on t and ~N is the
normal to the curve Γ. Developing this derivative requires es-
tablishing the expressions of ∂kin

∂t and ∂kout
∂t . For this purpose,

we follow the shape derivation scheme presented in [10]. Ac-
cordingly, it can be shown that:∫∫∫

in

∂kin(x, j, q, t)
∂t

=

3∑
i=1

A
(in)
i

∫
Γ(t)

H (in)
i (x, j)(~V . ~N)ds (8)

where H (in)
i and A(in)

i are defined as:

H (in)
1 (x, j) = 1; H (in)

2 (x, j) = Tj(x)qmax; H (in)
3 (x, j) = Tj(x)qmin

1framework developed in [10], where ~V is the direction of the Eulerian
derivative
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A(in)
1 =

∫∫∫
Ωin(t)

−qlog(2)log2(Tj(x))[
G(in)

1 (j, t)
]2 dx

A(in)
2 =

∫∫∫
Ωin(t)

q2log(2)
2

Tj(x)qmaxlog2(Tj(x))[
G(in)

2 (j, t)
]2 dx

A(in)
3 =

∫∫∫
Ωin(t)

− q2log(2)
2

Tj(x)qminlog2(Tj(x))[
G(in)

3 (j, t)
]2 dx

The G(in)
i functions are defined as:

G(in)
1 (j, t) =

∫∫∫
Ωin(t)

dx; G(in)
2 (j, t) =

∫∫∫
Ωin(t)

Tj(x)qmaxdx

G(in)
3 (j, t) =

∫∫∫
Ωin(t)

Tj(x)qmindx

In a similar manner, we establish the expression of ∂kout(x,j,q,t)
∂t .

It can easily be shown that:∫∫∫
(out)

∂k(out)(x, j, q, t)
∂t

=

3∑
i=1

A(out)
i

∫
Γ(t)

H (out)
i (x, j)(~V . ~N)ds (9)

with H (out)
i and A(out)

i defined in a symmetric manner to H (in)
i

and A(in)
i . By replacing (8) and (9) in eq.(7), we can establish

the expression of ∂E(Ω,q,j,t)
∂t :

∂E(Ω, q, j, t)

∂t
=

∫
Γ(t)

(kout − kin)(~V . ~N)ds+

3∑
i=1

Ain
i

∫
Γ(t)

H in
i (x, j)(~V . ~N)ds+

3∑
i=1

Aout
i

∫
Γ(t)

Hout
i (x, j)(~V . ~N)ds

Given that the speed flow ~v is ~v = F ~N , considering only the
inner part E(Ω, q, j, t) of the energy (eq.6), the curve evolu-
tion equation would be:

∂Γ(q, j, t)

∂t
= Fq(x, j, t) ~N

where the flow for a given scale j and order q is:

Fq(x, j, t) = kin − kout −
3∑

i=1

A(in)
i H

(in)
i −

3∑
i=1

A(out)
i H (out)

i (10)

3.3. Final flow field

Considering the global functional (eq.6), we define the global
flow, for all scales and all order of moments:

W (x, t) =

2∑
q=−2

(−sq
J∑

j=1

ωjFq(x, j, t))

with
sq =

{
1 if τin(q) >= τout(q)
−1 if τin(q) < τout(q)

(11)

The resulting surface evolution equation is expressed as:

∂Γ(t)

∂t
= W (x, t) ~N (12)

For the numerical implementation, we solve the active con-
tour (12) with a level set method using a standard finite differ-
ence scheme. Given the final flow field, the level set equation
of our active contour is:

∂Φ(x, t)

∂t
= W |∇Φ| (13)

4. EXPERIMENTAL RESULTS

4.1. Simulated Data

To validate the proposed multifractal active contour under
controlled conditions, we generated a simulated 2D image
(Fig.1). This consists of data generated from a log nor-
mal multiplicative cascade (LNMC) with (µout, σout) =
(0.3, 0.2), containing a rectangular area filled up with data
from another LNMC with (µin, σin) = (0.6, 0.3). This

Fig. 1. Synthetic image with the initial curve (top left). Curve evo-
lution at 30 and 60 iterations.

image has been segmented using our algorithm and the pa-
rameters (µ̃, σ̃) have been estimated for each region. Figure
2 shows the behavior of the model parameters during exe-
cution. The final estimated parameters are (µ̃out, σ̃out) =
(0.298, 0.208) and (µ̃in, σ̃in) = (0.602, 0.310). Figure 1
shows the result of the segmentation after 60 iterations that
took less than 2 minutes on a standard laptop with dual core.
The behavior of the global functional (eq.5) as the curve
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Fig. 2. Evolution of the parameters (µ, σ)

evolves is visualized in Fig. 3. One notices that the functional
exhibits a plateau (minimum) when the curve has correctly
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Fig. 3. Evolution of the global functional

delineated the object. The segmentation of the same simu-
lated image with an initial curve partial outside the object
leads to similar results after 160 iteration and less than 5
minutes. Convergence has been found more difficult when
the initial curve is entirely outside the object. To illustrate the
topological changes, a second 2D synthetic images with two
regions has been simulated. The image contains two objects
resulting from the same LNMC within a background from
a different LNMC. Figure 4 shows the simulated image,
the initialisation and segmentation. It can be seen that the
algorithm recovers correctly the two objects.

Fig. 4. Synthetic image with two objects. Curve evolution after 10,
30 and 65 iterations.

4.2. Application to real data

This section applies the proposed algorithm to the segmen-
tation of two real high frequency ultrasound skin images
having each a melanoma tumor within the dermis tissues.
Experiments were conducted using 3D high frequency B-
mode ultrasound images of in vivo skin tissue. Results are
shown for 2D slices for display convenience. Images were
acquired at 100 MHz with a Dermocup system (Atys Medical
France), equipped with a single element focalized 25 MHz
3D probe. The proposed multifractal active contour was used
to delineate the lesion out from the healthy tissue in the region
of interest. Figure 5 shows the results of the segmentation.
The multifractal parameters estimated for the melanoma are

Fig. 5. Evolution of the multifractal active contour on a real ultra-
sound image to segment a skin lesion (200 iterations).
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Fig. 6. Evolution of the global functional (eq.5) when segmenting
image Fig.5

(µ̃out, σ̃out) = (0.21, 0.48) and (µ̃in, σ̃in) = (0.14, 0.32).
The behavior of the global functional (eq.5) as the curve
moves is visualized in Fig. 6. We notice the plateau when the
curve achieves the borders of the tumor. The proposed algo-
rithm has also been compared with the state of the art method
proposed in [25]. This method considers that the image is
a mixture of two Rayleigh components and separates them
using an active contour based on the maximum likelihood cri-
terion. The results were obtained after 1000 iterations for the
Sarti method and 300 iterations for our proposed multifractal
active contour. Results are shown in figure 7. The results
show that the shape of the contour obtained by our method is
more regular than that of the Sarti method. Convergence has
been achieved for the Sarti method after 20 minutes whereas
our method converged in 10 minutes.

5. CONCLUSION

Motivated by medical applications, we proposed in this paper an
original active contour model based on multifractal properties. This
model bridges the gap between statistical active contours based on
global and local statics. Using the closed form expression of the ex-
ponent function of the proposed stochastic model, we established an
energy functional and derived a curve evolution equation using the
shape derivation scheme. The corresponding flow is mathematically
appealing and was shown to be efficient. A level set implementa-
tion was developed. The method was successfully applied to sim-
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Fig. 7. Comparison of the multifractal active contour (red) and the
Sarti [25] contour (green).

ulated log normal cascades and in-vivo high frequency ultrasound
skin images. Future work includes the investigation of speeding con-
vergence independently of the initialisation and a thorough charac-
terization of the performance of the segmentation algorithm using
clinical data.
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