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ABSTRACT

Recently it has been shown that using appropriate sampling
kernel, finite rate of innovation signals can be perfectly recon-
structed even tough they are non-bandlimited. In the presence
of noise, reconstruction is achieved by an estimation proce-
dure of all the parameters of the incoming signal. In this paper
we consider the estimation of a finite stream of pulses using
the Sum of Sincs (SoS) kernel. We derive the Cramér Rao
Bound (BCRB) relative to the estimated parameters. The SoS
kernel is used since it is configurable by a vector of weights:
we propose a family of kernels which maximizes the Bayesian
Fisher Information (BIM) i.e. the total amount of information
about each of the parameter in the measures. The advantage
of the proposed family is that it can be user-adjusted to fa-
vor one specific parameter. The variety of the resulting kernel
goes from a perfect sinusoid to the Dirichlet kernel.

1. INTRODUCTION

Finite streams of filtered pulses are an important class of sig-
nals since they appear in many applications including bio-
imaging, radar, and spread-spectrum communication. The
pulse shape being known, such signals are totally described
by the knowledge of the amplitudes and the delays of the
pulses. Therefore, even if those signals are not bandlimited,
they can be sampled thanks to their inherent sparsity, in the
sense that they are fully described by only a small number of
parameters per unit of time. This is the key idea of the finite
rate of innovation (FRI) framework introduced in [1]. FRI
signals can be sampled using a sampling kernel that must ver-
ify some specific properties [2]. In [3], a family of adjustable
kernels following those properties is proposed: the Sum of
Sincs (SoS) kernels. In this paper we focus on those kernels
since they allow a large variety of kernel shapes while observ-
ing the needed properties. The kernel shape is adjusted using
simply a vector of weights which allows to choose the best
weights to optimize a given objective.
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In this paper we aim to find the best kernel maximizing the
estimation performance. To characterize this performance, it
is standard to use the Cramér-Rao Bound (CRB) which pro-
vides a lower bound on the Mean Squared Error (MSE) of any
unbiased estimator [4]. The CRB has already been used to
optimize FRI sampling in [5] using exponential reproducing
kernels. In [6] we derived the deterministic CRB for a stream
of Dirac pulse sampling by an arbitrary kernel. However, the
CRB is a function of the unknown parameter vector mean-
ing that the optimal kernel is unknown parameter dependent.
To obtain a kernel which is optimal on average, we consider
the stochastic framework where the parameters are random
variables following a given distribution. Therefore we derive
the BCRB (as defined in [7]) for the estimation of a stream
of pulses using specifically the SoS kernel, which is already
recognized as one of the best [3]. Consequently, it is on that
family that the optimum is looked for.

Using the Bayesian Fisher Information Matrix (BIM) we
derive the optimum kernel which minimizes the Bayesian
CRB (BCRB). We choose an objective function that allows
to decide the relative importance of the delays and the am-
plitudes, which can vary depending on the applications. As
an example for a radar application, the main objective is to
recognize the delays since it allows to localize the source, in
this case it is of interest to favor the delay estimation. Another
open parameter allows the user to choose the robustness of
the resulting kernel towards the noise. The resulting family of
optimal SoS kernels can take the form from a simple sinusoid
to the standard Dirichlet function. The following notations
are used throughout the paper: em is the vector with a 1 at
the me coefficient, and zeros otherwise, 1L is a L×L matrix
full of ones. tr(.) represents the trace of a matrix. The real
inner product is defined as 〈g(t), x(t)〉 =

∫∞
−∞ g(t)x(t)dt.

2. PERFORMANCE BOUNDS
2.1. Sampling model

The signal to be sampled is a continuous-time signal with a
finite number of L weighted and delayed pulses:

x(t) =

L−1∑
l=0

alh(t− τl) (1)
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where τ = [τ0, . . . , τL−1]
T∈ RL+ and a = [a0, . . . , aL−1]

T

∈ RL with are the unknown parameters called the time-delays
and the amplitudes for each pulse h(t). This type of signal is
called Finite Rate of Innovation signal since it can be totally
determined with only a finite number of parameter within a
given frame of time, here 2L.

We consider the problem of estimating the unknown vec-
tor of parameters θ = [τT aT ]T based on a finite number
of samples N , uniformly sampled with a sampling interval
TS . We consider the Bayesian framework where al are i.i.d.
random variables following a centered distribution p(al) with
variance σ2

a, and τl are i.i.d random variables following a gen-
eralized normal (GN) distribution with zero location param-
eter, scale parameter α > 0 and shape parameter β > 0 de-
noted τl ∼ GN (0, α, β), we note the variance of p(τl) σ2

τ .
The GN distribution encompasses the Laplacian (β = 1),
Gaussian (β = 2) and uniform (β → ∞) distributions [8].
The N samples are a filtered/smoothed version of x(t) with a
kernel g(t) according to

yn = 〈g(t− nTS), x(t)〉+ wn = cn + wn (2)

wherewn is the real white Gaussian digital noise process hav-
ing mean zero and variance σ2.

Using the SoS sampling kernel, defined by [3]

g(t) = rect

(
t

NTS

) K/2∑
k=−K/2

bke
j2πkt
NTS , (3)

the vector of samples c = [c1, · · · , cN ] can be written

c = V(−tS)Bx, (4)

where tS = {nTS : 0 ≤ n ≤ N − 1} correspond to the vec-
tor of the time samples, V(−tS) is a N × (K + 1) matrix
whose (m, k)-th element is e−j2πkn/N and B is the K + 1×
K + 1 diagonal matrix having {bk} on its diagonal. We con-
sider kernels for which bk = b∗−k to ensure that the filter is
real valued. x is a vector composed with the K + 1 continu-
ous time Fourier transform coefficients of x(t). They can be
written

x = HV(τ )a, (5)

where V(τ ) is the (K+1)×Lmatrix whose (k, l)-th entry is
e−j2πkτl/(NTS), with ∀l, τl ≤ NTS . H is the (K+1)×(K+

1) diagonal matrix whose k-th entry is hk = 1
NTS

H
(

2πk
NTS

)
where H(w) is the continuous time Fourier transform of the
pulse h(t).

2.2. Bayesian Fisher Information Matrix

The measurement model (2) can be written in vector form
with y = [y1, · · · , yN ] and w = [w1, · · · , wN ]:

y = V(−tS)BHV(τ )a + w. (6)

The BIM is defined as the expectation over the param-
eters of interest of the Fisher Information Matrix. To de-
rive de CRB the rect(·) function is approximated by the GN
with β → ∞. The samples follow a normal distribution
y|θ ∼ N (µ, σ2IN ) where µ = V(−tS)BHV(τ )a. Using
the Slepian-Bang formula, the BIM is [4]

J (θ) =
1

σ2
Eθ

{
∂µT

∂θ

∂µ

∂θT

}
− Eθ

{
∂2 ln p(θ)

∂θ∂θT

}
. (7)

At low noise variance, the second term is negligible [7]. Us-
ing the fact that the variables are independent, and that p(al)
is centered we can separate the Fisher information relative to
the amplitude and the Fisher information relative to the de-
lays (see the appendix for the derivations). Finally, we con-
sider that p(τl) tends to a uniform law (β → ∞), since it is a
natural choice of distribution. The asymptotic BIM is:

Jτ ≈

 σ2
a4π

2

σ2NT 2
S

K/2∑
k=−K/2

k2h2kb
2
k

 IL

=

(
4σ2

aπ
2

σ2NT 2
S

bTDb

)
IL (8)

Ja ≈

N2

σ2

K/2∑
k=−K/2

h2kb
2
k

 IL +
N

σ2

(
h20b

2
0 (1L − IL)

)
=
N2

σ2

((
bT D̄b

)
IL + h20b

2
0 (1L − IL)

)
(9)

where D and D̄ are diagonal matrices with [D]kk = k2h2k
and [D̄]kk = h2k.

2.3. Bayesian Cramér-Rao Bound

The BCRB is the trace of the inverse of the BIM [7]. Using
the Sherman-Morison inversion formula, the BCRBs at high
SNR are:

BCRB(τl) ≈
σ2NT 2

S

4π2σ2
a

1∑K/2
k=−K/2 k

2h2kb
2
k

(10)

BCRB(al) ≈
σ2

N

(∑K/2
k=−K/2
k 6=0

h2kb
2
k

)

·


h20b

2
0 + (K − 1)

∑K/2
k=−K/2
k 6=0

h2kb
2
k

h20b
2
0 +K

∑K/2
k=−K/2
k 6=0

h2kb
2
k

 . (11)

3. OPTIMAL KERNEL

3.1. Objective function

The sum of sinc kernel is a particularly versatile kernel
compared to the often used Gaussian and Dirichlet ker-
nels since it can be weighted through the coefficient vector
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b =
[
b−K/2, · · · , b0, · · · bK/2

]T
. It is therefore possible to

choose the best kernel depending on a specific pulse shape
h(t), and for a specific objective function.

We want to optimize the kernel in a way to be able to
favor the delays or the amplitudes. To be able to compare the
BCRBs, we use the normalized BCRBs, which are defined
following the definition of the normalized mean square error
[7] by NBCRB(al) = BCRB(al)

σ2
a

for the amplitudes and by

NBCRB(τl) =
BCRB(τl)

σ2
τ

for the delays.
We cannot easily compute the optimal kernel which min-

imizes the total BCRB since the trace of the BCRB matrix is
not convex. Therefore, we aim to maximize the total amount
of information about each of the parameter in the measures.
This information is measured by the trace of Jτ and the trace
of Ja for the delays and the amplitudes parameter respec-
tively [9]. We remark in the expressions (8) and (9) that all
the diagonal elements of the BIM matrices are equal and note
Jτ and Ja these constant diagonal terms. The maximization
of the trace of Jτ (Ja respectively) is equivalent to maximiz-
ing Jτ (Ja respectively). By inversion of the NBCRB, the
normalized BIM on each parameter (we note it JNτ and JNa )
is the BIM multiplied by the variance of the considered pa-
rameter. A user-defined tuning parameter λ is introduced in
the objective function to define the relative importance of each
parameter. Using the normalized BIM we get that for λ = 0.5
both parameters have the same relative importance.

The final objective function is:

fλ(b) = λJNτ + (1− λ)JNa (12)

= λσ2
τJτ + (1− λ)σ2

aJa (13)

= λ
σ2
τσ

2
a4π

2

σ2NT 2
S

bTDb + (1− λ)N
2σ2
a

σ2
bT D̄b (14)

= bT∆λb. (15)

Note that the matrices D and D̄ are positive definite, therefore
this criterion is convex.

We have

∆λ = SNR

(
λ
σ2
τ4π

2

NT 2
S

D + (1− λ)N2D̄

)
(16)

with SNR = σ2
a/σ

2.
A constraint inherent to the problem of sampling finite

rate of innovation signals is that the coefficient bk are different
from zero. Since in the objective function the sign of the bks
has no influence, this constraint is equivalent to the constraint
that bk ≥ ε > 0, where ε is a user-defined parameter. Increas-
ing the filter’s amplification will always reduce the BCRB,
therefore the energy is normalized using the constraint that
||b||2 = K + 1. The resulting optimization problem is

max
b

bT∆λb s.t.

{
||b||2 = K + 1

∀k ∈ [−K/2 · · ·K/2] : bk ≥ ε
.

(17)

u

ε

−K
2

K
2

m?
λ−m?

λ

u− ε

Fig. 1. Resulting optimal kernel

3.2. Optimization results

We first consider the following simplified problem, for ε = 0:

max
b

bT∆λb s.t. ||b||2 = K + 1. (18)

The Lagrangian function is

∀λ ∈ [0, 1],Lλ(b, α) = bT∆λb− α(||b||2 − (K + 1)). (19)

The optimal b? is given by differentiating L(b, α) wrt.
b and the optimal b?λ is the eigen-vector associated with the
largest eigen-value βm?λ(∆λ) of matrix ∆λ.

Note that the optimal b?λ is a function of parameter λ.
In addition, as ∆λ is diagonal and [∆λ]−m = [∆λ]m, the
optimal b?λ is given by

b?λ =

√
K + 1

2
(em?λ + e−m?λ) (20)

since the largest eigen-value of ∆λ is of multiplicity 2. There-
fore the constraint that b−m = bm is respected. Note that
||b?λ||2 = K + 1.

Remark 1 In the case of a Dirac pulse, the frequency coeffi-
cients hk = h are all equal, therefore

Ja = SNRN2h2
K/2∑

k=−K/2

b2k

does not depend on the chosen kernel b, since
∑K/2
k=−K/2 b

2
k

is fixed by constraint. Thus, when λ = 0 i.e. when only the
amplitudes are considered, all the kernels are solutions of the
optimization problem. Among those solutions, the Dirichlet
kernel is of particular interest [3].

When ε > 0, we make the change of variable βk = b2k and
solve the equivalent problem using CVX, a package for spec-
ifying and solving convex programs [10] [11]. We observe
in the simulations that the resulting kernel has the same form
than for ε = 0 but with a floor at the level ε (see Fig. 1). The

peak is at the level u =
√

(1−ε2)(K+1)
2 when ε 6= 1 such that∑K/2

−K/2 βk = K + 1.
The resulting optimal kernel in time domain is:

g?(t) = 2(u− ε) cos
(
2πm?t

NTS

)
+ εDK/2

(
2πt

NTS

)
(21)
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where Dp (x) =
∑p
k=−p e

jkx is the Dirichlet kernel. If ε =
0, this kernel is a simple sinusoidal signal, whereas if ε = 1
we obtain that u = 1 and the optimum kernel corresponds
to the often used Dirichlet kernel. An example of kernel is
showed Fig. 2: it is composed of a sum of a sinusoid and a
Dirichlet function centered at the origin.

−100 −50 0 50 100
−20

0

20

40

60

80

100

120

  time

  Kernel in time domain

Fig. 2. Optimal kernel in time domain, for N = K = 200 and
ε = 0.5

Remark 2 The optimization of the BCRB or the BIM gives
the best possible kernel theoretically. This kernel is obtained
for ε→ 0, however using this kernel makes the estimation un-
feasible. Choosing appropriately ε is important depending on
the chosen estimation procedure. The higher ε, the higher is
the peak which allows to distinguish the delays of the source.
If there is no noise, this peak can be infinitely small, and a
perfect estimation procedure will recognize the delays. How-
ever, when noise is added, it is important to have a higher
peak to mitigate the effect of the noise. Therefore the choice
of ε will depend principally on the signal to noise ratio.

4. SIMULATION

For all the simulation results we consider the following pa-
rameters: N = K = 200, Ts = 1, ε = 0.5 and SNR = 30
dB. The BIM is linear with respect to the SNR, therefore we
do not plot the results depending on the SNR. We compare
the optimized kernel with the standard Dirichlet kernel, which
has all bks equal to 1.

The optimization results for the case where h(t) is the
Dirac delta function are shown Fig. 3. Since hk are all equal,
the normalized BCRB on the amplitude is constant with re-
spect to the parameter λ and equal for all the kernels. The op-
timal kernel choice is therefore driven by the delays and the

Amplitude Delays
Dirichlet kernel 4.975× 10−6 8.984× 10−8

Optimized kernel λ = 0 4.975× 10−6 8.950× 10−8

Optimized kernel λ > 0 4.975× 10−6 3.626× 10−8

Fig. 3. Normalized BCRBs for the Dirac pulse
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Fig. 4. Index of the peak m?
λ for a Gaussian pulse.
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Fig. 5. Normalized BCRB on the amplitudes for a gaussian
pulse.

result of the optimization is m? = K for all λ except λ = 0
where only the amplitudes are considered. Since the perfor-
mance are constant for all λ instead λ = 0, we wrote in Fig.
3 the BCRB on the amplitude and the delays of the Dirich-
let kernel, and the optimized kernel for λ = 0 and λ > 0.
When λ = 0 the performance are approximately the same as
the Dirichlet kernel’s for both parameters but for λ > 0 the
BCRB on the delays and consequently the total BCRB are
improved.

In a second time, we consider the optimization of the ker-
nel in the case where h(t) is a Gaussian pulse. Since the pulse
frequency coefficients are not constant, the choice of the peak
depends on λ: the higher λ the more important the delays
compared to the amplitudes. The peak is near zero when λ
is small, since the maximum of the Gaussian is at the origin.
When λ increases, the peak is chosen as the trade-off between
h2k and h2kk

2, therefore the index increases while λ increases
(see Fig. 4). The BCRB on the amplitude is minimized when
λ is small, and while λ increases and the importance of the
amplitude parameter decreases, the BCRB on the amplitude
increases to join the performance of the Dirichlet kernel (see
Fig. 5). On the other hand, the BCRB on the delays is bad
when λ = 0, since the delays are not considered, the perfor-
mance are worse than the Dirichlet kernel. When λ increases
the BCRB on the delays increases to reach a constant level for
λ > 0.1, which surpasses the Dirichlet kernel’s performance
(see Fig. 6).
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Fig. 6. Normalized BCRB on the delays for a gaussian pulse.

5. CONCLUSION

In this work we derived analytical expressions of the BCRB
for the estimation of the parameters used for the sampling of
finite rate of innovation signals. Based on the BIM relative
to these parameters, we propose an optimization framework
which chooses the best SoS kernel with respect to the Fisher
information. The user can choose the importance of the time
domain peak, which adjusts the robustness of the estimation
regarding the noise level and the relative importance of the
delay and the amplitude parameters. We show by simulation
that the optimized kernel gives better results than the stan-
dard Dirichlet kernel, for both Dirac and Gaussian stream of
pulses.

6. APPENDIX

The derivatives of µ are ∂µ
∂τl

= alV(−tS)BHġ(τl) and
∂µ
∂al

= V(−tS)BHg(τl) where g(τl) = e
−j2πkτl
NTS for

−K/2 ≤ k ≤ K/2 and ġ(τl) =
∂g(τl)
∂τl

.

[V(−tS)BH]
H

V(−tS)BH is a diagonal matrix whose
ke element is Nb2kh

2
k.

Since the distribution p(al) is zero-mean, taking the ex-
pectation of the FIM annuls the cross-terms. Furthermore for
l 6= l′ : [Jτ ]ll′ = 0. The remaining non-zero terms in the
matrix are:

[Jτ ]ll = Nσ2
a

K/2∑
k=−K/2

k2b2kh
2
k,

[Ja]ll = N

K/2∑
k=−K/2

b2kh
2
k

[Ja]ll′ = N

K/2∑
k=−K/2

b2kh
2
kEτ

{
e
j2πkτ
NTS

}
· Eτ

{
e
−j2πkτ
NTS

}
.

We consider the limit case of the GN distribution when
β → ∞ and approximate it by the uniform distribution of τ
between −N/2 and N/2. The last expression becomes:

Eθ

{[
∂µ

∂al

]H [
∂µ

∂a′l

]}
= Nb20h

2
0.
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