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ABSTRACT

This paper describes a new strategy for image resampling de-

tection whenever the applied resampling factor is larger than

one. Delving into the linear dependencies induced in an im-

age after the application of an upsampling operation, we show

that interpolated images belong to a subspace defined by the

interpolation kernel. Within this framework, by computing

the SVD of a given image block and a measure of its degree

of saturated pixels per row/column, we derive a simple detec-

tor capable of discriminating between upsampled images and

genuine images. Furthermore, the proposed detector shows

remarkable results with blocks of small size and outperforms

state-of-the-art methods.

Index Terms— digital image forensics, resampling de-

tection, singular value decomposition, tampering detection

1. INTRODUCTION

Digital images are nowadays a substantial medium for com-

municating with people and also one of the most effective

ways to easily transmit information. With the current growth

of Internet usage from mobile devices, a captured image may

get the power of instantly distribute breaking information by

simply sharing it in any social network. Consequently, as im-

portant as the instantaneous communication is, the authentic-

ity of the sent information should also be quickly validated.

In this regard, during last years, a lot of techniques have

been designed to automatically analyze the authenticity or in-

tegrity of a given image in a blind way [1]. Although most of

the shared images are JPEG compressed, there is an increas-

ing tendency to give support to raw image formats. For exam-

ple, several image hosting websites support the upload of raw

images and also some of the high-end smartphones bring the

opportunity of capturing raw images. Therefore, tampering

detection in uncompressed images will probably be a valu-

able tool in the near future.

Resampling detection as a means of unveiling forgeries

is very appropriate for uncompressed images. Usually, when
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image splicing is performed, one of the pasted regions has to

be geometrically adapted to the background scene. The ap-

plied spatial transformation (e.g., resizing, rotation, etc.) will

make use of a resampling operation which will unavoidably

leave characteristic dependencies among neighboring sam-

ples that are not typically present in a genuine image. In the

literature, we can find several techniques that are able to ex-

pose forgeries by detecting inconsistencies in such character-

istic resampling traces [2–7].

Some of the proposed techniques work with a residue sig-

nal obtained by a global predictor [2], a fixed linear kernel [4],

or a derivative filter [3]. The statistics of this signal reflect the

underlying periodic correlations due to image resampling, so

those schemes exploit such properties in the frequency do-

main. Alternatively, the study of the quantization applied af-

ter the resampling operation (i.e., due to rounding) has also

been exploited to estimate the resampling factor in [7].

In this case, we are more interested in the approaches that

study local linear dependencies induced by linearly interpo-

lated spatial transformations [2–6]. A first attempt to char-

acterize these linear dependencies through the Singular Value

Decomposition (SVD) of a resampled image has been carried

out in [6] by Wang and Ping, resorting to an SVM classifier

to perform the detection of resampling. A deeper understand-

ing of the linear correlations originated locally has been de-

scribed by Kirchner in [5], where a local predictor per each

row/column of the image is computed. By analyzing in the

frequency domain the differences between the obtained pre-

dictor coefficients, Kirchner provided an effective resampling

detector, especially for downsampling. However, as indicated

in [7], the frequency analysis presents some drawbacks im-

pairing the performance of the detector when a reduced num-

ber of samples is available and also when a regular structure

or a periodic pattern is present in the image under analysis.

In relation to the last two works, and motivated by their

shortcomings, here we investigate the local linear dependen-

cies introduced once an upsampling process is applied to an

image. As a result, we propose a very simple method that re-

lies on the calculation of the SVD of a given block from an

image, without resorting to an SVM classifier and being able

to produce suitable results by processing blocks of small size.

Note that we do not address the downsampling process in this

paper, but we provide some insights about how the proposed

detector could be adapted to deal with downscaled images.
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The remaining of the paper is organized as follows: the

theoretical analysis of the linear dependencies in upsampled

images and the basic idea behind the proposed detector are

explained in Section 2. The formal definition of the developed

detector is tackled in Section 3, while the experimental results

are treated in Section 4. Finally, conclusions and future work

are reported in Section 5.

2. PROBLEM MODELING

Let us define a digital image with a single color chan-

nel as a P × Q matrix F with elements Fp,q and indices

p ∈ {0, . . . , P − 1} and q ∈ {0, . . . , Q − 1}. The values

of each element Fp,q are discrete quantities whose range is

determined according to the image bit depth.

The resampling operation is assumed to be linear, so each

pixel value in the resampled image G is computed by lin-

early combining a finite set of neighboring samples coming

from the original image. We consider that the applied resam-

pling factor ξ uniformly scales each dimension of the original

image and we define it as ξ , L
M

, i.e., the ratio between

the upsampling factor L ∈ N
+ and the downsampling factor

M ∈ N
+. The application of this resampling operation in-

volves two main steps: the definition of the resampling grid

with the new pixel locations, and the computation of the val-

ues in those locations. In a single expression, each pixel value

Gi,j of the resampled image can be obtained as follows:

Gi,j =
P−1
∑

k=0

Q−1
∑

l=0

h

(

i
M

L
+ δ − k

)

h

(

j
M

L
+ δ − l

)

Fk,l,

(1)

where δ denotes a shift between the two sampling grids1 and

h(·) represents the impulse response of an interpolation ker-

nel whose length is denoted by Nh.

The analysis in the remainder of this section is applica-

ble to any linear kernel regardless of its length or impulse

response; however, for non-linear kernels, the forthcoming

modeling could only be understood as an approximation.

Notice that after computing all the pixels of the resampled

image, its values must fit the original resolution or bit depth

of the input image. Therefore, as a last step, the resampled

values must be quantized to the original precision, having

Ri,j = Q∆ (Gi,j) , (2)

where Ri,j denotes each element of the quantized resampled

image R and Q∆ (·) represents a uniform scalar quantizer

with step size ∆.

From the resampling operation shown in (1), it can be eas-

ily checked that any resampled value Gi,j is calculated using

exactly the same interpolation weights as for Gi+k1L,j+k2L

with k1, k2 ∈ N. More precisely, for any k1, k2 ∈ N, the

1In MATLAB’s function imresize and also in the tool convert from

ImageMagick’s software, the shift corresponds to δ , 1

2

(

1 + M

L

)

.

column-ordered vector y ∈ R
(L+2)2 that is built up from

an L × L block of the resampled image starting at sample

Gk1L,k2L and adding a surrounding border of one pixel, is

computed through the linear combination of samples from

the column-ordered vector x ∈ R
(M+Nh)

2

, which, in turn,

is set up from an M ×M block of the original image starting

at sample Fk1M,k2M and adding a border of ⌊Nh/2⌋ pixels.

Notice that the amount of border pixels to add to each block

depends on the shift δ introduced between the original and the

resampled grid.

According to this observation, each column-ordered vec-

tor from the resampled signal y is obtained through the fol-

lowing linear transformation

y = Hx, (3)

where H represents the interpolation matrix containing the

weights of the interpolation kernel. From the linear transfor-

mation in (3), it is clear that each column-ordered vector y

belongs to an (M + Nh)
2-dimensional subspace of R(L+2)2

generated by matrix H. We will use Y for denoting this sub-

space, which is defined as

Y ,

{

w ∈ R
(L+2)2 : w = Hs, s ∈ R

(M+Nh)
2
}

.

However, note that due to the quantization applied after per-

forming the resampling operation in (2), the observed vectors

z of length (L + 2)2 (i.e., starting at sample Rk1L,k2L with

k1, k2 ∈ N and adding a surrounding border of one pixel),

are a perturbed version of the interpolated ones. As long as

the statistical distribution of the input signal is smooth and its

variance is much larger than the square quantization step ∆2,

each vector z can be modeled as

z = Hx+ n,
where the new variable n is a random vector, whose compo-

nents are i.i.d. with zero mean and variance σ2
n = ∆2

12 (i.e.,

the mean and variance of the quantization noise).

Based on this model, by stacking K vectors z into a K ×
(L+2)2 matrix, we obtain an observation matrix ZK that can

be represented in terms of its singular value decomposition,

having

ZK = UΣVT ,

where U ∈ R
K×K is a unitary matrix whose columns are

the left-singular vectors of ZK ; Σ ∈ R
K×(L+2)2 is a rect-

angular diagonal matrix whose diagonal elements σi (with

i ∈ {0, . . . , (L + 2)2 − 1}), are known as the singular val-

ues of ZK which are sorted in descending order; and, fi-

nally, V ∈ R
(L+2)2×(L+2)2 is a unitary matrix with the right-

singular vectors of ZK .

From this decomposition, it is expected that the (M +
Nh)

2 dominant right-singular vectors of ZK (i.e., those cor-

responding to the largest singular values) span the signal sub-

space Y (induced by the resampling operation), while the re-

maining ones span the noise subspace (caused by the round-

ing operation), i.e., for i ≥ (M+Nh)
2 we have σi ≈

√

Kσ2
n,

as K → ∞.
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Resampled by ξ=1.4 (L=7, M=5)

Quantization noise level

Fig. 1. Evolution in logarithmic scale of the singular values of

matrix ZK built from a block of size 512×512 from the green

channel of a quantized resampled image without demosaicing

traces. ξ = 7
5 = 1.4 and linear kernel.

In Fig. 1, we show an example of the evolution of the

singular values when matrix ZK is built from a block of size

512×512 of an image resampled by ξ = 7
5 = 1.4 with a linear

kernel (Nh = 2). It is easy to see how the first (M +Nh)
2 =

49 singular values (out of (L + 2)2 = 81) have a magnitude

above the quantization noise level
√

Kσ2
n (with K = 5184

and ∆ = 1), as it was anticipated.

Note that the proposed scheme assumes L to be known

at the detector; of course, this does not hold in real foren-

sic scenarios. As a plausible solution, an iterative procedure

could be considered covering all the possible values of L, but

this would significantly increase the computational burden.

Therefore, we simplify the process of resampling detection

by directly resorting to the singular value decomposition of

an image block. Then, we explore when the singular values

vanish in such a manner that the signal subspace is discernible

from the noise subspace.

2.1. Practical solution

Let us define Z as a matrix gathering pixel intensity samples

from a block of size N×N of a quantized resampled image R

under test. Due to the presence of noise (e.g., rounding errors

after resampling), we will initially assume that matrix Z has

N non-zero singular values, i.e., Z has full rank, but at the end

of this section, a discussion on how to manage rank-deficient

matrices will also be introduced.

The rows (or columns) of Z can be treated as N points be-

longing to an N -dimensional space. In the previous analysis,

we have seen throughout the application of the SVD to ZK

that in a resampled image, the vectors of length (L+ 2)2 can

be represented by (M +Nh)
2 dimensions, yielding a dimen-

sionality reduction of a factor around ξ2 (i.e., the applied up-

sampling factor in each direction). By considering now each

row/column of Z as a vector of length N , it will be possi-

ble to represent the set of N points with a smaller number of

dimensions k ≈ N
ξ

, since each single row/column has been

resampled solely by ξ.

This will be reflected in the calculation of the SVD of Z,

where only the first k ≈ N
ξ

singular values will have a con-
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Non−resampled

Resampled by ξ=2

Fig. 2. Evolution in logarithmic scale of the singular values of

an image block Z of size 512 × 512. Dashed lines represent

the results from a non-resampled image and solid lines corre-

spond to an image resampled with ξ = 2 and linear kernel.

siderably larger magnitude than the rest. Conversely, if we

take a block Z from a never-resampled image, there will not

exist such characteristic linear dependency between neighbor-

ing samples and all singular values will have a magnitude sig-

nificantly larger than the noise level in a resampled image.

Fig. 2 draws a comparison in terms of singular values in

two different cases, i.e., when matrix Z is built from a block

of size 512× 512 from the green channel of a non-resampled

image without demosaicing traces (dashed line) and from its

resampled version, obtained by using ξ = 2 and a linear in-

terpolation kernel (solid line). In both cases, matrix Z has

N = 512 non-zero singular values, but as it can be checked in

Fig. 2, the magnitude of the singular values from the resam-

pled image drops more sharply than the corresponding one

coming from the non-resampled image. For the resampled

image, the number k of singular values significantly larger

than the noise level approaches N
ξ

, so in this particular case

k ≈ 512
2 = 256. This is due to the fact that approximately

half of the samples of each row/column of Z can be computed

in this resampled case as a linear combination of the remain-

ing ones. For non-resampled images, there should only be a

significant drop-off in indices close to the rank of the matrix

under analysis.

Since we are assuming the applied resampling factor to be

larger than one, we can state that typically the total amount of

variance of the input signal explained by those singular values

with indices smaller than i ≈ N
ξ
−1 for any image resampled

by ξ, will be larger than for a non-resampled image. As a

consequence, the magnitude of the singular values at such in-

dex is also expected to be smaller. This fact indicates that

a statistic accounting for the magnitude of a singular value

at the correct position can be discriminative for detecting the

application of a resampling operation in a given image block.

As indicated above, any matrix Z built from an image

block is assumed to have N non-zero singular values; how-

ever, in practice, undesirable artifacts as pixel saturation may

arise, thereby removing part of the noise due to rounding and

yielding singular values with negligible magnitude. The pres-

ence of saturation and the possibility of having some linear
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dependency between samples will affect the expected evolu-

tion of the singular values of Z, producing two possible out-

comes:

1. The number of non-zero singular values is substantially

smaller than N . This rarely happens unless several

rows/columns of matrix Z are completely saturated.

2. The number of non-zero singular values is close to N , but

their magnitude vanishes more sharply than usual. This

takes place when linear dependencies are present among

the rows/columns of Z, and can be boosted by saturations.

Therefore, the detector will have to deal with the degree of

saturation borne by any image block under analysis and it will

also probably consider a means for deciding when a computed

singular value is negligible. In the next section, the adopted

detection strategy is described.

3. PROPOSED DETECTOR FOR ξ > 1

From the analysis carried out on the previous section, it is

clear that by exploiting the magnitude of the singular values

at a certain index we can derive a hypothesis test for image

resampling detection. In the definition of our hypothesis test,

the observed data consists of an N×N matrix Z containing a

block of samples coming from one of the color channels of a

digital image which may have been resampled or not. Under

the null hypothesis, i.e., H0, we assume that the observed data

Z has never been resampled; while, under the alternative hy-

pothesis, i.e., H1, we assume that the observed data has been

resampled by any factor greater than one.

The definition of the test statistic ρ will depend on the

degree of saturation that the image block under analysis may

have experienced, as pointed out in the last part of Section 2.1.

By denoting γrow (respectively, γcolumn) as the quotient be-

tween the total number of saturated pixels in a block (i.e.,

pixels equal to 255 for an 8-bit depth image) and the num-

ber of rows (respectively, columns) that contain at least one

saturated pixel, the degree of saturation s, is defined as

s ,
1

N
max {γrow, γcolumn} .

On the other hand, to determine which of the computed sin-

gular values are negligible, we use a tolerance level ǫ = 2−52

(i.e., the spacing of double precision numbers in MATLAB).

Moreover, we define a variable r ≤ N that represents the total

number of singular values above this tolerance level. Accord-

ingly, the proposed test statistic is:

ρ ,











0, if r < 0.1N,

log
(

σν−⌊0.05N⌋

)

, if s ≥ 0.45 and r > 0.95N,

log (σν−1) , otherwise,
(4)

where ν =
⌊

r
ξmin

+ 0.5
⌋

represents the rounded version of

the maximum number of significant dimensions that could be

achieved by a resampled image with any ξ ≥ ξmin. Hence,

ξmin is the minimum resampling factor that can be detected

by our detector. Notice that the first two cases contemplated

in (4) have been heuristically derived and are settled to avoid

the two effects caused by pixel saturation discussed at the end

of Section 2.1.

Assuming all the particularities for obtaining the test

statistic, we expect to find larger values of ρ for non-resampled

images, thus accepting the hypotheses according to the fol-

lowing conditions:
H0 : ρ > T,

H1 : ρ ≤ T,

where T is a predefined threshold. Several experiments are

performed next to study the validity of the proposed approach.

4. EXPERIMENTAL RESULTS

The designed detector is tested over all the uncompressed im-

ages belonging to the Dresden Image Database [8] and stem-

ming from Nikon cameras (a total of 1317 images). To per-

form each full-frame resampling operation, the image pro-

cessing tool convert from ImageMagick’s software is used.

As interpolation kernels, we select those that are commonly

available in any image processing tool, namely: Linear; from

the family of cubic filters we choose Catmull-Rom and B-

spline; and, finally, a three-lobed Lanczos-windowed kernel.

The employed discrete set of resampling factors is defined

in the interval [1.05, 2] (sampled with a step size of 0.05),

given that these are the most appropriate upsampling factors

to avoid the introduction of visible distortions.

Since our main objective is to unveil tampered regions

(which might be small) through the detection of resampling

inconsistencies, we are interested in studying the achieved

performance of our detector with blocks of small size, thus

leading us to process N × N image blocks Z with N = 32.

The analysis of resampling traces is then carried out by tak-

ing the center 32 × 32 block of the green channel from each

image under study. The evaluation of the performance of the

proposed detector is conducted in terms of AUC (Area Under

the Receiver Operating Characteristic (ROC) curve) and de-

tection rate at a fixed False Alarm Rate (FAR), i.e., concretely

at FAR ≤ 1%. All results are compared with the detector pro-

posed by Kirchner in [5], because this method outperforms

Popescu and Farid’s detector [2], which is usually considered

to be the most reliable detector.

The performance analysis is twofold: firstly, images with-

out demosaicing traces are processed,2 and, secondly, demo-

saiced images are tested. In each of these cases, both detectors

must also be applied on all the non-resampled images in order

to fix the detection thresholds (i.e., T ). For our test statistic

we take ξmin = 1.05, and a neighborhood size K = 3 for

Kirchner’s detector, as specified in [5].

2Specifically, non-resampled images without demosaicing traces are con-

structed by getting access to the output of the camera sensor (through the

image processing tool dcraw) and then picking always the same-positioned

green pixel from the two available samples in each 2× 2 Bayer pattern.

23rd European Signal Processing Conference (EUSIPCO)

2115



1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ξ (resampling factor)

A
re

a
 u

n
d
e
r 

th
e
 R

O
C

 c
u
rv

e
 (

A
U

C
)

 

 

Linear

Catmull−Rom

B−spline

Lanczos

(a) AUC (without demosaicing traces)

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ξ (resampling factor)

D
e
te

c
ti
o
n
 r

a
te

 a
t 
F

A
R

 ≤
 1

%

 

 

Linear

Catmull−Rom

B−spline

Lanczos

(b) Detection rate at FAR ≤ 1%

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

0.4

0.5

0.6

0.7

0.8

0.9

1

ξ (resampling factor)

A
re

a
 u

n
d
e
r 

th
e
 R

O
C

 c
u
rv

e
 (

A
U

C
)

 

 

Linear

Catmull−Rom

B−spline

Lanczos

(c) AUC (with demosaicing traces)

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ξ (resampling factor)

D
e
te

c
ti
o
n
 r

a
te

 a
t 
F

A
R

 ≤
 1

%

 

 

Linear

Catmull−Rom

B−spline

Lanczos

(d) Detection rate at FAR ≤ 1%

Fig. 3. Evaluation of the proposed detector (solid lines)

against Kirchner’s detector (dashed lines) in terms of AUC

and detection rate for blocks of size 32×32. The first row con-

tains the results from images without traces of demosaicing,

while the second row is for images with demosaicing traces.

The first row of Fig. 3 shows the performance of the

proposed approach when testing images without demosaic-

ing traces. From these results, we can state that our method

shows better performance with B-spline and Linear interpo-

lation kernels than with Catmull-Rom and Lanczos, which

commonly get the worst results. Our detector presents some

difficulties with resampling factors close to one, i.e., for

1.05 ≤ ξ ≤ 1.2, whereas less issues arise when the re-

sampling factor approaches 2. Although not being reported,

additional experiments have been performed increasing the

size of the block (e.g., with N = 128), obtaining values of

AUC ≥ 0.998 for all tested filters and ξ ≥ 1.1.

An interesting aspect is that our detector shows a strong

gain with respect to Kirchner’s when images are resampled

with the B-spline kernel, regardless of the value of ξ. For in-

stance, in Fig. 3(b), Kirchner’s detection rate is below 0.1 for

all tested ξ, while our detector shows a detection rate almost

always above 0.9 (excepting ξ = 1.05). Therefore, the pro-

posed SVD-based analysis has proven to be very convenient

for B-spline resampling detection. A second stimulating fea-

ture is that our detector needs a very small set of samples (i.e.,

32×32 pixels) to work remarkably well, while this particular

size starts to be a problem for Kirchner’s detector.

The second row of Fig. 3 collects the results arising from

images with demosaicing traces. By comparing the achieved

outcomes in this case with respect to the previous ones (i.e.,

without traces of demosaicing), it becomes apparent that our

detector works better when it has to distinguish purely non-

resampled (i.e., non-demosaiced) images against their upsam-

pled version. The reason is that when non-resampled images

exhibit demosaicing traces, there exist unavoidable linear de-

pendencies which affect the expected value of the statistic ρ
for genuine images. Usually, these linear correlations caused

by the demosaicing process are not so strong as the ones in-

troduced by the resampling operation (mainly because current

demosaicing algorithms are adaptive and, commonly, non-

linear), but this will harm to some extent the idea behind the

use of the SVD as a means to distinguish linearly correlated

data against uncorrelated data.

Apart from this global lost in performance, the behavior

of our detector is almost identical to the one discussed for

images without demosaicing traces. In general, all the experi-

mental results show that our detector is a reliable solution for

image resampling detection.

5. CONCLUSIONS

In this paper, a simple strategy for resampling detection has

been derived. The proposed detector only needs to compute

the SVD of a given image block and a measure of its degree

of saturated pixels per row/column, for discerning upsam-

pled images from genuine ones. The achieved performance is

promising and when compared with Kirchner’s state-of-the-

art method, our detector outperforms it.

As future work, we are planning to apply the same idea

for detecting resampling operations by factors smaller than

one, but jointly exploiting the traces left by the demosaicing

process and the downsampling in the three color components

of a digital image.
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