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ABSTRACT

In rehabilitation, continual assessment of those with
disabilities is needed to determine the effectiveness of therapy
and to prescribe the regimen and intensity of future treatment.
Conducting assessments is challenging - there is a need to
maintain objectivity and consistency across time. Also,
repetitious tests can lull the assessor into lower levels of
alertness. These motivate for  automated scoring of
rehabilitative tests.

In this paper, we describe our work in automating the
widely used and accepted Action Research Arm Test. We
focus on the grasp subtest which employs a cube into which
we embed sensors. Previously we have used live patient
simulators and now the full set of patient trials have been
completed.

We employ Singular Spectrum Analysis on the signals,
for which the resulting eigenvalues are then selected in a 
principled way to aid in signal filtering. The results show
encouraging promise in our quest for automated scoring.

Index terms - Singular spectrum analysis, subspace
analysis stroke, rehabilitation, accelerometer, instrumented
objects, automatic scoring

1. INTRODUCTION

A patient who is unable to execute the activities of daily
living (ADL) creates a challenging environment as there is the
need for constant medical attention, resources and often a
caregiver to administer whatever aid is  necessary. The upper
limbs determine the feeding and cleaning functions, the
rehabilitation of which requires a customised regimen of
exercises, tailored to the needs of the person. Also, progress
needs to be monitored in order to assess the effectiveness of
the treatment. But these tasks are labour intensive  as trained
therapists have to record and keep track of the outcomes of
repetitive exercises. Besides, the lack of clinical skills in 
homes reduce the intensity of the rehabilitation process [1]. 

With the widespread use of information technology, a
preferred solution is to use this to automate and monitor the
tests and the exercises. Furthermore, by using tests that are
widely accepted by the industry we take advantage of the
ratification process ensuing from their widespread use.
Another advantage is that this provides a point of focus in
discussions with clinical staff familiar with the methodology
and technologists seeking to automate the tests.

The Action Research Arm Test (ARAT) formulated by
Lyle [2] is a performance test designed to assess recovery of
upper limb function after damage to the cerebral cortex. It can
be used to check on progress in treatment as well as evaluate
the effectiveness of treatment. Additionally, it is reliable and
quickly administered. Basically, it consists of various objects
to be moved in a specified manner in assessing grasp, grip
and pinch movements, which are used in the ADL. In trying
to capture such fine movement, it is difficult to use methods

which measure signals from sensors directly attached to  the
subject. These are intrusive, may impede motion, or if using
video - which due to the nature of the signal, gives inherently
noisy readings and is susceptible to the vagaries of lighting
and occlusion effects. 

In our approach, we embed sensors to the objects being
handled in a rehabilitative setting for the following benefits:
i) It is capable of sensing fine motion and pressure exerted by
a person and ii) There is no need to mount sensors on the body
of a person.

In Section 2 we present the motivation for our approach
and cover background material . Section 3 describes our
clinical setup. The theory for our signal analyses is covered in
Section 4. Then the results of our experiments are presented
in Section 5 before we summarize and conclude in Section 6.

2. ASSESSING LIMB FUNCTION AND MOTION

In this section we present the clinical motivation for our
work, presenting the case for using instrumented objects used
in standardised clinical tests.

In formulating tests of limb function and movement,
enforcing a protocol  for their administration  provides for
objective and quantitative measurements.

Currently, several of these tests use visual based scoring
which introduces a degree of subjectivity and an inability to
perceive subtle motions. Furthermore, the repetitious nature
of the activities in the tests induce a measure of
inattentiveness. This motivates for automating and monitoring
these tests through electronic means by instrumenting the
objects used in these tests, which is an ongoing field of
research.

By using tests that are widely accepted by clinicians,
w hich have been ratified through years of deployment, 
provides a point of focus and discussion.

Yozbatiran et al. [3] made further standardisations to the
ARAT by specifying the placements of the objects and the
dimensions of the furniture supporting these objects. They
also quantified the scoring by taking note of the timing and
quality of the movement performed by a person but the
quality was rather descriptive in nature as well, befitting a
visual based scoring system.

Lee et al. [4] described work done with the instrumented
device described in this paper using healthy patient
simulators. Portions of their paper have been reproduced here
for the sake of continuity in discussion.

The analysis of biomedical signals benefit from
decomposition into constituent parts to identify features of
interest and recent frequency analyses using data driven
decomposition processes have been employed successfully.
Here, Singular Spectrum Analysis (SSA) has been used to
analyse naturally occurring physical phenomena and only
recently it has been applied to biological signals. The forms of
the constituent signals it produces are not constrained to
sinusoids, so it produces readily interpretable constituent
signals such as trends, periodic data and noise  from short
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noisy signals.
 In our w ork w e combine two types of sensors not often
used together, namely accelerometers and force sensors. This
has the following benefits: i) it is capable of sensing fine
motion and pressure exerted by a person and ii) there is no
need to mount sensors on the body of a person. The next
section describes our setup.

3. EXPERIMENTAL SETUP AND TRIAL CONDUCT

Here we describe how we implement the ARAT and show
some preliminary results. In this paper, we focus on Test4 of
the ARAT Grasp Subtest which involves the grasping of a
wooden block shaped as a cube with a dimension of 7.5 cm.
This object which we will call the Cube, is moved from a
specified point directly to a target. The three main
components of our instrumented object system as shown in
Fig. 1 are:

i) A set of resistive sensors used for measuring forces exerted
on the faces of the Cube.
ii)  A tri-axial accelerometer for acceleration measurements.
iii)  A microcontroller converting the force sensor and
accelerometer readings, sending the data to a workstation.

The sensor readings are taken at a rate of 30 samples/sec so
that a maximum frequency of 15 Hz can be reliably recorded.
Unlike our previous work, we do not perform and pre-
filtering of data to avoid missing important information.

3.1      ARAT scoring and test subjects

In Fig. 2 we see the Cube being grasped by a right handed
person moving it from the lower, hand si lhouette to the higher
black target, the trajectory shown by a broken line. This
action has to be completed in a given time. The Cube is held
upright and the motion is to be what a heal thy person would
exert w ithout undue duress. We would expect this task to be
completed smoothly, with a minimum of energy. In Fig. 2,
note that the non-grasping (left) hand is used as support, so
the force exerted on the table can also provide useful data for
assessment.

The ARAT scoring uses a four point scoring scale, from
3 for satisfactory completion to 0 which is non-completion.
Yozbatiran et al . [3]  attempted to make the rating more
objective. We will only summarize comments from their
paper in the interests of space. A score of 3 indicates
completion of the task within 5 seconds with appropriate
hand, arm and posture movements which are detailed in a
table in the paper.

A score of 2 is given when the subject completes the task
but does so “with great difficulty and/or takes abnormally
long time” to fully complete the task, taking from 5 to 60
seconds. 

For a score of 1 which indicates partial completion, the
timing would be greater than 60 seconds. Also just being able
to grasp, hold and lift the Cube would be sufficient to w arrant

this score.
However a score of 0 indicates that the subject is unable

to perform any part of the task within 60 seconds. The
inability of the hand to grasp the Cube within the time period
would count towards this. Besides this, i f the subject does not
use the fingers to grasp the Cube or use another hand or
mechanical support to manipulate the Cube would be
considered for this score.

A total of 34 patients who have had a history of stroke and
undergone rehabilitation were recruited for the trial which was
conducted over a period of 60 days. The test was performed
in a hospital setting. Data from patients with a score of zero
could not be used as the Cube could not be lifted up properly.
They participated in other subtests.

Each patient would execute a series of ARAT motions in one
session, up to 3 times per action, if possible. For each session,
data is continuously recorded and manually segmented later
into various trials. An important point is that the score is given
to a patient on a session basis, and thus some sort of averaging
is done on the trials. Furthermore, the sessions were run over
a period of time and scored by different therapists, so there is
some variability in the scores, even with briefings conducted.

In this case, we had a total of 225 signals from 26 patients
who could participate in the ARAT Test4. Since we are only
interested in the z-axis, we look at only 78 signals. It should
be noted that three patients could only complete two trials.
The distribution of the patients and their scores were: Score 3
- 11, score 2 - 13, score 1 - 2 and score 0 - 6.

3.2      Qualitative results

In Fig. 3 we show the force sensor signals obtained for two
subjects with a score of 1 to demonstrate the ability of the
sensors to detect nuanced movements.

The lines with magenta ‘.’   and blue ‘" ’ markers have
values that are close to zero initially. These denote the surface
for the hand to grasp. The line with the red ‘+’ marker denotes
the force on the bottom sensor exerted by the mass of the
Cube when it rests on a surface. It goes to zero when the Cube
is lifted and this acts as a cue to indicate the start  and end of
a movement. This allows automatic segmenting of signals
yielding an accurate measure of the duration of the movement.
From this signal, another observation from Fig. 3 is that  the
subject may incorrectly drop the Cube rather than placing it
on the table and that a subject may graze the bottom of the

Fig. 1.  Hardware block diagram of the embedded sensor system
in the Cube. Dotted lines indicate optional portions. Fig. 2. ARAT Cube oriented being moved. Ideal path of

object compared to actual path taken
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Cube against another object during a move.

4. THEORY OF ANALYSIS

The theory for SSA is covered here, with the
determination of the important eigenvalues of the system. We
also briefly review some of our earlier approaches. In keeping
with the relevant l i terature, we will substitute the term time
series for a signal in this section.

4.1      Singular Spectrum Analysis

SSA is a subspace analysis method originally developed for
single time variable analysis. In this section we describe the
process, based on the work by Vautard et al.[5] where for a
time series, at each time instant t  the data is represented by a
vector x(t) = {x(t): t=1...N} with N samples. A window of
length M < N is used to embed this series into a trajectory
matrix Y, of size M×(N! M) where for the first and second
column vectors:

1x  = [x(1), x(2),..., x(M)]  T

2 ix  = [x(2), x(3),..., x (M+1)]       and for column MT

Mx  = [x(N!M), x(N!M+1),..., x(N)]T

where  denotes the transpose operator. By concatenating theT

vectors, the trajectory matrix is:

1 2 (N – M)Y = [x  x  ...x  ]

and the covariance matrix C for the system is given by:

C = Y Y / N     of size M×MT

Using Singular Value Decomposition (SVD) on C produces
the sorted scalar eigenvalues ë and the eigenvectors e, of
length M. They are used to form principal components (PC), 
the k  PC is a vector of length N!M, is given by:th

  

A useful step is to reconstruct a signal  component (RC)
corresponding to the k  eigenvalue. This vector of length Nth

has its components constructed differently, so that at a sample
instance t we have:

for M # t # N ! M + 1

        for 1 # t # M ! 1

       for N ! M # t # N 

Where K is the set of PCs used for reconstruction, most often 
1. The different equations are needed to cater  for  the
beginning and end conditions of the embedding operation.
More details are in the given reference.

4.2      Significant eigenvalues

The SVD returns a set of M sorted eigenvalues. The sorted
rank of the eigenvalue shows the amount of contribution of
that component to the variability of the data. By plotting the
ës in terms of their magnitude we get a scree plot, so named
as it resembles the scree which is the rubble at the foot of a
mountain as seen in Fig. 4. 

It can be seen that the slope of the scree plot changes
drastically in the first few  ës, and settles on a gentle slope for
the rest. This allows identification of  the significant ës and
eigenvectors ignoring the rest which can be attributable to
noise, which reduces the data dimensionality.

The eigenvalue with the sequence number d at which the
significant ës begin have been the object of much research.
Early approaches worked on the linear trends of changes in ë
as reviewed comprehensively by Raîche et al. [6]. In [5] this
point has been referred to as the Statistical  Dimension,
however the computation seems geared towards nonlinear
systems. 

In this paper we introduce a new way of obtaining the
significant eigenvalues based on Relevant Dimension
Estimation (RDE) as introduced by Braun et al. [7]. They
consider the problem of reducing the dimensionality of a
classification problem that uses using kernel subspace
methods. A kernel covariance matrix is computed and the ës
(obtained by employing SVD) decrease in the same manner as
in a scree plot. The lower valued ës are attributed to noise and
their distribution is modelled by a zero-mean Gaussian

2distribution w ith standard deviation (SD) ó  while the higher
valued ës explain the actual variation in data and modelled by

1another Gaussian distribution with SD ó  - or more concisely:

1 2for a ë in ranked d in the series. Also, ó  o  ó  in order to get
meaningful results  as the “noisy” ës will have a lower

Fig. 4. Scree plot - first 6 eigenvalues indicated

Fig. 3. Force sensor plots for score of 1 - top- Cube is dropped, not
placed, bottom- Cube brushes against surface but is placed, not
dropped. Marker with red + is bottom sensor plot, other markers are
force exerted by fingers.
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Fig. 5. Plots of signal, filtered and noise data : Left, score of 3 and right,
score of 2 using SSA. RDE was used for automatic significant eigenvalue
determination. Top to bottom are xyz-axis plots respectively.

variance as it is evenly distributed along smaller values. 
The higher valued ës, as part of the signal proper, will

have a higher variance as seen in the scree plot in Fig. 4. The
optimal value of d, is one which will minimize the negative
log-likelihood:

This value of d will be used to separate the eigenvalues.

4.3      Earlier signal analysis using SSA

To provide some background, we consider briefly our earlier
works [4] using data from patient simulators and  using SSA
to analyse accelerometer signals from the Cube to detect
abnormal conditions. Among them are:

i) selecting the dominant frequency from a particular RC from
the accelerometer y-axis (vertical) signal.
ii) using SSA to prefi l ter signals and computing the average
energy of the xyz-axis signals.
iii) prefiltering signals with SSA and then computing the area
under the signals.
iv)  determining the most dominant frequency among all three
axes, using Multivariate SSA[8].

The way the patient simulators were asked to simulate
movement disorders may have effect on the kinds of signal
features produced. However, the kinds of analyses performed
prepared us for what to expect for actual patient data.

5. RESULTS

We present some initial results in this section and show
how the design of the sensors help us to interpret the obtained
readings. This is followed by an analysis of the smoothness
of movement.

5.1      Significant axis of movement

A typical plot of accelerometer signals between patients with
a score of 3 and 2 are compared in Fig. 5. It can be seen that
in general the movements of those with a score of 2 have
more variation.

We subjected the data to the analyses performed before,
but no discernible pattern of correlation was found. For
example, w here we used the significant frequency in the 2nd

SSA reconstructed signal in the y-axis, i t could not show any
discernible pattern here. 

But when we examined the entire set of patient data, the
z-axis data which corresponds to the side-to-side movement
of the Cube, showed results more correlated with the score.
Specifically, it was noticed that the signal’s coefficient of
variation, which is the standard deviation divided by the mean
value gave interesting results. By removing the mean, this
value corresponds to the root mean squared (RMS) value of
the AC component of our signals. The step to remove the
mean should be done anyway to mitigate the effect of the
constant pull of gravity on the accelerometer. This measure
then gives an indication of the energy expended in the
movement. We separate the RMS value of the signal into the
component attributable to the signal, RMSS and that of noise,
RMSN.

In our  data  set,  each trial has an identification (ID) code
formulated as SCC_MM_T  w here S is P for our subjects who
were patients, CC  the  subject  code,  MM   the movement
type, which has a value of TS for our subjects and T being the
trial number, 1 to 3.

The results are shown in Table 1. Some error is to be expected
because of variation in execution of the moves and scoring.
These are summarized in the confusion matrices found in
Tables 2 and 3.

Table 1 RMS signal/noise value of accelerometer readings for
patients with score 2 and 3. Each have 3 trials and the axis values of
1/2/3 represent x/y/z respectively. Shaded rows are z-axis.

Subject Axis RMS signal/noise score
P20_TS_1 1 5.35 3.81 2

P20_TS_1 2 10.5 6.08 2

P20_TS_1 3 7.18 4.6 2

P20_TS_2 1 3.58 3.12 2

P20_TS_2 2 11.82 4.2 2

P20_TS_2 3 7.29 4.91 2

P20_TS_3 1 4.16 4.84 2

P20_TS_3 2 14.6 8.71 2

P20_TS_3 3 6.56 5.24 2

P21_TS_1 1 4.23 1.61 3

P21_TS_1 2 8.83 2.41 3

P21_TS_1 3 6.86 2.2 3

P21_TS_2 1 4.48 2.28 3

P21_TS_2 2 9.95 3.42 3

P21_TS_2 3 5.73 2.86 3

P21_TS_3 1 3.2 2.36 3

P21_TS_3 2 10.11 3.03 3

P21_TS_3 3 7.17 3.28 3

From examining the trial data, we found a threshold of 6.9 is
sufficient to distinguish between the scores of 3 and 2. For a
session, we take the average of the scores of the 3 trials and
round up. For example, for P20_TS_3, the RMSS is 6.56
which would indicate a score of 3, but the other two trials
P20_TS_1 and P20_TS_2 the RMSS are 7.18 and 7.29 the
average is 7.01 - a score of 2. In Table 2, for scores of 1 and
2, a RMSS value of 12 separates between them.
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Table 2 RMS signal/noise value of accelerometer readings for
patients with score 1 and 2. Only the 3  or z-axis shown.rd

Subject Axis RMS signal/noise score
P27_TS_1 3 14.45 5.37 1

P27_TS_1 3 14.73 6.05 1

P27_TS_1 3 12.78 4.85 1

P28_TS_2 3 8.85 3.61 2

P28_TS_2 3 9.11 5.03 2

P28_TS_2 3 11.46 5.4 2

In summary, the steps to automatically score a test  are:

i) for each subject and session,  score each trial.
ii) normalize z-axis signals to zero mean.
iii) perform a SSA to obtain the ës.
iv) perform a Relevant Dimension Estimation of the signal.
v) note the threshold for significant ës.
vi) reconstruct the zero-mean signal-use significant ës.
vii) compute the RMSS.
viii)if RMSS < 6.9, score is 3, < 12, score is 2 else 1
ix) select the score that appears in most of the trials.
x) if there is a tie, average the RMS and use as score.

However, if there is improper execution of a move, a score of
1 is given, as per guidelines.

Next we present the results of our automated scoring. The
accuracy is given on a per-trial basis and on a per-session
basis, noting that the per-session score is the maximum result
from all the per-trial results. It is unfortunate that only two
score 1 sessions were recorded and one of them obtained this
score because of improper handling of the Cube. 

It should be noted that out of 75 trials, 31 trials were
scored at 3, 38 scored at 2 and 6 scored at 1. Also, of the 26
valid sessions,  11 were scored at 3 and also 13 at 2 but 2 at
a score of 1. The results are shown in the confusion matrices
in Tables 3 and 4.

Table 3 Confusion matrix on per-trial scoring - bottom row
shows the number of trials receiving the score.

            Actual
 Predict

3  2  1

 3 19 6 0

2 9 28 0

1 3 4 6 

# actual scored 31 38 6

From this, we can see that the accuracy for trial scoring is 
(total correct/total sessions) = (19+28+6)/75 = 71%

Table 4 Confusion matrix on per-session scoring - bottom row
shows the number of subjects receiving the score.
 

            Actual
Predict

3 2 1

3 7 3 0

2 3 9 0

1 1 1 2

# actual scored 11 13 2

From this, we can see that the accuracy for session scoring is

(total correct/total sessions) = (7+9+2)/26 = 69%.
It bears recalling from Sec. 3.1 that we are attempting to

objectify what is essentially a rather subjective rating, given
by different scorers with no means of normalizing results.
Informal, unpublished results with other team members on the
grant team, working on other aspects of the ARAT have not
been able to achieve this kind of recognition rate.

6. CONCLUSIONS

In summary, we attempted to automatically score the
ARAT Test4. Using SSA with RDE we introduced a new time
domain feature, namely the Root Mean Squared value of the
SSA filtered z-axis accelerometer signal to get an accuracy of
69% amidst rather uncontrolled circumstances. 

The z-axis data corresponds to the side by side movement
of the Cube. It may be that this movement is visually more
prominent to the assessor.  This is a significant finding that
validates our approach and paves the way for continuing
research in this direction.

Future work w il l  involve the analyses of other
accelerometer signals, other types of eigenvalue analyses for
a more robust determination and characterisation of
movement disorders. There is also the need to secure adequate
subjects with an even distribution of scores that are needed to
be validated against. A more thorough briefing procedure for
clinicians acting as scorers would also be needed.
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