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ABSTRACT
We propose a general algorithmic framework for constrained
matrix and tensor factorization, which is widely used in unsu-
pervised learning. The new framework is a hybrid between
alternating optimization (AO) and the alternating direction
method of multipliers (ADMM): each matrix factor is up-
dated in turn, using ADMM. This combination can naturally
accommodate a great variety of constraints on the factor ma-
trices, hence the term ‘universal’. Computation caching and
warm start strategies are used to ensure that each update is
evaluated efficiently, while the outer AO framework guaran-
tees that the algorithm converges monotonically. Simulations
on synthetic data show significantly improved performance
relative to state-of-the-art algorithms.

1. INTRODUCTION

Constrained matrix and tensor factorization techniques are
widely used for latent parameter estimation and blind source
separation in signal processing, dimensionality reduction and
clustering in machine learning, and numerous other applica-
tions in diverse disciplines, such as chemistry and psychol-
ogy. Unconstrained rank factorization of matrices and ten-
sors is relatively well-studied, as in the matrix case the ba-
sis of any solution is simply the principal components of the
singular value decomposition (SVD), and in the tensor case
alternating least squares (ALS) and other algorithms usually
yield satisfactory results. However, the available algorithms
for constrained matrix and tensor factorization leave much to
be desired as of this writing, and a unified framework that can
easily and naturally incorporate multiple constraints on the la-
tent factors is sorely missing. Existing algorithms are usually
only able to handle one or at most few specialized constraints,
and/or the algorithm needs to be redesigned carefully if new
constraints are added.

In this paper, we propose a general algorithmic framework
that seamlessly and relatively effortlessly incorporates many
common types of constraints and compositions thereof, build-
ing upon and bridging together the alternating optimization
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(AO) framework and the alternating direction method of mul-
tipliers (ADMM). While the AO framework provides mono-
tone convergence for these (NP-)hard factorization problems,
ADMM serves as a sub-routine that handles almost ‘univer-
sal’ constraints very efficiently, with per-iteration complex-
ity similar to the unconstrained LS algorithm or sub-optimal
approaches like the multiplicative non-negative matrix factor-
ization (NMF) update.

1.1. Notation

We denote the (approximate) factorization of matrix Y ≈
WHT , where Y is m × n, W is m × k, and H is n × k,
k ≤ m,n, and in most cases much smaller. Note that adding
constraints on W and H may turn the solution from easy to
find (via SVD) but non-identifiable, to NP-hard to find but
identifiable. It has been shown that simple constraints like
non-negativity and sparsity can make the factors essentially
unique, but at the same time, computing the optimal solution
becomes NP-hard – see [1] and references therein.

For simplicity, we only consider 3-way tensors in this pa-
per, which are denoted with an under-score Y, of size n1 ×
n2 × n3. In what follows, we focus on the so-called paral-
lel factor analysis (PARAFAC) model, also known as canon-
ical decomposition (CANDECOMP) or canonical polyadic
decomposition (CPD), which is essentially unique under mild
conditions [2], but constraints certainly help enhance estima-
tion performance, and even identifiability. One compact way
to represent the CPD model is by writing it in matricized
form as YT

(1) ≈ (C � B)AT , where A, B, and C are the
three factors sharing the same number of columns k, Y(1)

is the mode-1 matricization of Y, and � denotes the Khatri-
Rao product. Details of these tensor related operations can be
found in tutorial papers like [3], and are omitted here.

1.2. Alternating direction method of multipliers

The ADMM solves convex problems that can be put in the
following form

minimize
x,z

f(x) + g(z)

subject to Ax + Bz = c,
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by iterating the following updates

x← arg min
x
f(x) + (ρ/2)‖Ax + Bz− c + u‖22,

z← arg min
z
g(z) + (ρ/2)‖Ax + Bz− c + u‖22,

u← u + (Ax + Bz− c),

(1)

where u is a scaled version of the dual variable corresponding
to the equality constraint Ax+Bz = c, and ρ is specified by
the user.

A comprehensive review of the ADMM algorithm can
be found in [4] and the references therein. ADMM con-
verges under very mild conditions (f and g being closed,
proper, and convex, and that an optimal solution exists). No-
tice that smoothness is not required, which means inequality
constraints can be incorporated into the cost function by set-
ting the function value to be +∞ if the constraints are not
satisfied. Moreover, the splitting of x and z can be care-
fully chosen so that each of the updates is trivial (possibly in
closed-form).

2. CONSTRAINED MATRIX FACTORIZATION

We start with an algorithm for constrained matrix factoriza-
tion. We adopt the common matrix factorization setting by
formulating it as the optimization problem

minimize
W,H

1

2
‖Y −WHT ‖2F + rW (W) + rH(H), (2)

where rW (·) and rH(·) are regularizations imposed on the
latent factors W and H, and can take value +∞, so that any
hard constraints can also be included.

The problem (2) is not convex in both W and H, but is
convex in one if we fix the other, thus alternating optimiza-
tion is usually employed. We first describe how to efficiently
update H while fixing W using ADMM, and then treat this
as a sub-routine to solve (2) efficiently.

2.1. ADMM for regularized least-squares

We first reformulate the subproblem for the update of H as

minimize
H,H̃

1

2
‖Y −WH̃‖2F + rH(H)

subject to H = H̃T .

(3)

It is easy to adopt the ADMM algorithm and derive the fol-
lowing iterates:

H̃← (WTW + ρI)−1(WTY + ρ(H + U)T ),

H← arg min
H

rH(H) +
ρ

2
‖H− H̃T + U‖2F ,

U← U + H− H̃T .

(4)

One important observation is that, throughout the iterations
the same matrix WTY and matrix inversion (WTW+ρI)−1

are used. Therefore, to save computations, we can cache
WTY and the Cholesky decomposition of WTW + ρI =
LLT . Then the update of H̃ is dominated by one forward sub-
stitution and one backward substitution, resulting in a com-
plexity of O(k2n).

The update of H is the so-called proximal operator of the
function (1/ρ)rH(·) around point (H̃T−U), and in particular
if rH(·) is an indicator function of a convex set, then the up-
date of H becomes a projection operator, a special case of the
proximal operator. For a lot of regularizations/constraints, es-
pecially those that are often used in matrix factorization prob-
lems, the update of H boils down to element-wise updates,
i.e., costing O(kn) flops. Many efficiently implementable
proximal operators can be found in [5, §6]. Here we list some
of the most commonly used constraints/regularizations in the
matrix factorization problem. For simplicity of notation, let
us define H̄ = H̃T −U.

• Non-negativity. In this case rH(·) is the indicator function
of R+, and the update is simply zeroing out the negative
values of H̄. In fact, any element-wise bound constraints
can be handled similarly, since element-wise projection is
trivial.

• Lasso regularization. For rH(H) = λ‖H‖1, the sparsity
inducing regularization, the update is the well-known soft-
thresholding operator: hij = [1−(λ/ρ)|h̄ij |−1]+h̄ij . The
element-wise thresholding can also be converted to block-
wise thresholding if we know a priori that the zeros are
grouped, leading to the group sparsity regularization.

• Simplex constraint. In some probabilistic model analysis
we need to constrain the columns or rows to be element-
wise non-negative and sum up to one. As described in [6],
this projection can be done with a randomized algorithm
with linear-time complexity on average.

We found empirically that by setting ρ = ‖W‖2F /k, the
ADMM iterates for the regularized least-squares problem
converge very fast. With a good initialization (which will be
discussed later), the update of H usually does not take more
than 5 or 10 ADMM iterations. The proposed algorithm for
the sub-problem (3) is summarized in Alg. 1. As we can
see, the pre-calculation step takes O(k2m + k3) flops to
perform the Cholesky decomposition, and O(mnk) flops to
form F. In the iterations the complexity is dominated by the
H̃-update, with complexity O(k2n). Notice that for the un-
constrained problem, the complexity is essentially the same
as the pre-calculation step plus one iteration. For a small
number of ADMM iterations, the complexity of Alg. 1 is of
the same order as the unconstrained problem.
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Algorithm 1: Solve (3) using ADMM
Input: Y, W, H, and U

1 Initialize H and U;
2 ρ = ‖W‖2F /k ;
3 Calculate L from the Cholesky decomposition of
WTW + ρI = LLT ;

4 F = WTY ;
5 repeat
6 H̃← L−TL−1(F + ρ(H + U)T ) using

forward/backward substitution ;
7 H← arg minH rH(H) + ρ

2‖H− H̃T + U‖2F ;
8 U← U + H− H̃T ;
9 until convergence;

10 return H and U.

2.2. Alternating optimization

Now, naturally, Alg. 1 is used as the sub-routine for alternat-
ing optimization. Since W and H are updated alternatingly,
one would expect that the W and H (and their corresponding
dual variables) obtained in the previous iteration should not be
very far away from the updates for the current iteration. Thus,
we can initialize the current ADMM update using the previ-
ous results. Experiments show that this can greatly reduce the
number of inner-iterations required for ADMM. Soon after an
initial transient stage, the sub-problems can be solved in just
one iteration. The proposed algorithm for constrained matrix
factorization is summarized in Alg. 2.

Algorithm 2: Proposed algorithm for (2)

1 Initialize W and H ;
2 UW ← 0, UH ← 0 ;
3 repeat
4 (H,UH)← arg minH

1
2‖Y−WHT ‖2F + rH(H)

5 using Alg. 1 initialized with (H,UH) ;
6 (W,UW )← argminW

1
2‖Y−WHT ‖2F+rW (W)

7 using Alg. 1 initialized with (W,UW ) ;
8 until convergence;

The convergence of Alg. 2 follows from that of the gen-
eral block coordinate descent algorithm framework, i.e., the
objective is monotonically decreasing, and every limit point is
a stationary point, if there are only two blocks [7]. If we limit
the maximum number of ADMM inner-loops, the updates at
the initial phase will not be guaranteed to be conditionally op-
timal – but this can be treated as a generalized initialization
step. By using the proposed warm-start strategy, the ADMM
inner-loops soon become conditionally optimal, thus ensuring
convergence of the outer-loop.

3. EXTENSION TO TENSOR FACTORIZATION

Going from two-way to higher-way data arrays is easy when
using our approach: we can again adopt AO over the matrix
factors, and solve each of the matrix sub-problems using Alg.
1. Without loss of generality, let us consider the update of A,
which is arg minH of (3) with W = C �B, the Khatri-Rao
product of C and B, and Y = YT

(1), the mode-1 matricization
of the data tensor Y.

Due to the Khatri-Rao structure of W, WTW can
be computed efficiently as CTC ∗ BTB, where ∗ is the
element-wise (Hadamard) product. How to efficiently calcu-
late WTY = (C�B)TYT

(1) depends on how the data tensor
Y is stored, and various efficient implementations have been
proposed [8–10]. For simplicity, we only consider the dense
case, for which a computationally (but not memory-) efficient
way is to replicate the tensor in three matricizations Y(1),
Y(2), and Y(3), so that in each iteration they are readily
available. Beyond the computation of these special prod-
ucts, the rest of the computations involved in the ADMM
inner-loops are all very cheap, as we have explained in the
matrix case. Detailed algorithm description in the tensor case
is omitted due to space limitations, and will be given in the
journal version.

As we can see, the ADMM is an appealing sub-routine
for alternating optimization, leading to a simple plug-and-
play generalization of the workhorse ALS algorithm. Theo-
retically, they share the same per-iteration complexity if the
number of inner ADMM iterations is small, which is true
in practice, after an initial transient. Efficient implementa-
tion of the overall algorithm should include data-structure-
specific algorithms for (C�B)TYT

(1), and may include par-
allel/distributed computation along the lines of [11]. Related
developments will be included in the journal version.

4. RELATED WORK

The most common constraint imposed on the latent factors is
non-negativity. Traditional methods used for the alternating
sub-problems are active-set (AS) [12] and its variations like
block principle pivoting [13, 14]. The main idea is that the
problem becomes unconstrained if we figure out the variables
that should be equal to zero. However, even if we know ex-
actly where the zeros should be (which is approximately so
in the alternating optimization framework), the least-squares
problem for each row of H is different. One can form WTW
and WTY once, but for each row of H different subsets
of entries in WTW should be inverted. This becomes un-
appealing when k grows large. Some other methods, like
the multiplicative-update (MU) [15] or hierarchical alternat-
ing least squares (HALS) [16], ensure that the per-iteration
complexity is dominated by calculating WTW and WTY,
although more outer-loops are needed for convergence. To
move beyond non-negativity, MU is not applicable, AS is di-
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rectly amendable to sparsity regularization only, and HALS
is able to handle all constraints imposed on the columns of
H [17], but not the rows.

The ADMM algorithm for constrained/regularized linear
least-squares problems is widely used in large scale com-
pressive sensing and image processing [18, 19] applications,
thanks to its nice convergence properties and the ability of
Cholesky caching. However, to the best of our knowledge,
this is the first time that it is used as a sub-routine for con-
strained matrix/tensor factorization. ADMM is a perfect
fit for this kind of problem, because essentially each sub-
problem is a large number of constrained least-squares shar-
ing the same mixing matrix, thus one matrix inversion is not
only amortized throughout the inner iterations but also across
different rows (as opposed to, say, what happens with the
active-set method), resulting in per-iteration complexity that
is almost the same as the unconstrained one. Furthermore,
the alternating optimization framework naturally provides
good initializations, which greatly reduces the number of
inner-iterations required.

We should emphasize that our proposed algorithm is in
general alternating optimization, and ADMM is only applied
to the sub-problems. There are also algorithms that directly
apply the ADMM approach to the whole problem [11, 20].
In that case, the per-iteration complexity is also the same as
the unconstrained alternating least-squares. However, due to
the non-convexity of the problem, the objective is not guaran-
teed to decrease monotonically, unlike alternating optimiza-
tion. Moreover, both ADMM and AO guarantee that every
limit point is a stationary point, but in practice AO almost al-
ways converges, which is not the case for ADMM (applied to
the whole problem).

5. NUMERICAL EXAMPLES

In this section we provide some illustrative examples to show-
case the numerical performance of our proposed algorithm on
synthetic data, compared to some of the existing algorithms
mentioned in the previous section. All experiments are per-
formed in MATLAB 2013a on a Linux server with 32 Xeon
2.00GHz cores and 128GB memory.

5.1. Non-negative matrix factorization

Here we compare the proposed algorithm with some state-of-
the-art NMF algorithms on synthetic data. By specifying the
values of m, n, and k, the true W and H are generated by
drawing the elements from an i.i.d. exponential distribution
with mean 1, and then 50% of the elements are randomly set
to 0. The data matrix Y is then set to be their product Y =
WHT +N, where the elements of N are drawn from an i.i.d.
Gaussian distribution with variance σ2 = 10−2.

Three algorithms are used for comparison:
HALS Hierarchical alternating least-squares [16];
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Fig. 1: Convergence of some NMF algorithms.

Algorithm ‖Y −WHT ‖F run time iterations

AO-ADMM 193.0702 22.0218s 109.3
HALS 193.1642 28.4811s 205.0
AO-BPP 197.1617 33.6751s 50.4
ADMM 198.1530 29.4779s 102.9

Table 1: Averaged performance of NMF algorithms.

AO-BPP Alternating optimization using block principle piv-
oting [13]1;

since these two algorithms are reported in [13] to out-perform
other NMF algorithms, and
ADMM ADMM applied to the whole problem [20]2.
The proposed algorithm is denoted as AO-ADMM. All algo-
rithms are initialized with the same random point.

The convergence time in seconds versus the relative error
‖Y−WHT ‖F /‖Y‖F of the aforementioned algorithms for
two indicative problem instances is shown in Fig. 1. On the
left, the problem size is m = n = 2000 and k = 100. As we
can see, our proposed algorithm converges with the fastest
rate. On the right, the problem size is increased to m = n =
5000, and k = 300, and the gap becomes larger, indicating
that our proposed algorithm has better scalability, thus it is
more suitable for big data. The first case is also repeated 10
times with random synthetic data, and the averaged result is
given in Table 1.

5.2. Non-negative PARAFAC

We now test the algorithms in the case of tensors. For dif-
ferent values of n1, n2, n3, and k, the true latent factors
A, B, and C are generated in the same manner as W and
H in the NMF case. The data tensor Y is then generated
as a low-rank PARAFAC model with additive noise yijl =∑k
f=1 aifbjfclf + νijl, where νijl are i.i.d. Gaussian noise

with variance σ2 = 10−2.
Again, our proposed algorithm, denoted as AO-ADMM,

is compared with HALS [16]1, AO-BPP [14]1, and ADMM
[11], and the convergence time in seconds versus the rela-
tive error in indicative problem instances is shown in Fig. 2.

1Matlab code downloaded from http://www.cc.gatech.edu/

˜hpark/nmfsoftware.php
2Matlab code downloaded from http://mcnf.blogs.rice.edu/
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Fig. 2: Convergence of some NTF algorithms.

Algorithm ‖YT
(1)−(C�B)AT ‖F run time iterations

AO-ADMM 1117.634 222.4882s 32.0
AO-BPP 1117.674 723.8094s 23.6
HALS 1117.665 1943.9312s 146.7
ADMM 1163.799 427.9522s 77.0
tensorlab 1119.867 369.9924s N/A

Table 2: Averaged performance of NTF algorithms

All algorithms are initialized with the same random point3.
On the left, n1 = n2 = n3 = 500 and k = 100, while
a somewhat unbalanced case is shown on the right with
n1 = 1000, n2 = 500, n3 = 200 and k = 100. The first
case is also repeated 10 times with random synthetic data,
and the averaged result is given in Table 2. For this exper-
iment we have also included Tensorlab [21], which handles
non-negative PARAFAC using “all-at-once” derivative-based
nonlinear least-squares optimization techniques. As we can
see, AO-ADMM again outperforms all other algorithms in all
cases.

6. CONCLUSIONS AND FUTURE WORK

In this paper we proposed a general algorithmic frame-
work for matrix and tensor factorization that aims to ap-
proximate the data matrix/tensor in the least-squares sense,
with the ability to efficiently handle almost ‘universal’ con-
straints/regularizations imposed on the latent factors. The al-
gorithm builds upon the widely used alternating optimization
framework, but the constrained sub-problems are solved via
the alternating direction method of multipliers. Simulations
on synthetic data, with non-negativity constraints imposed,
showed great performance compared to the state-of-the-art
algorithms. More simulations of this algorithm with more
constraints imposed and applied to real data will be given in
the journal version.

We are also working on applying this algorithmic frame-
work for factorization problems where the error measure is
different from the least-squares criterion, e.g., the l1 loss, the
Kullback-Leibler divergence, and/or loss evaluated only at a

3However, ADMM is reported to be more sensitive to ‘good’ initializa-
tions [11], thus ADMM is probable to be restarted at a different initialization.

subset of entries in Y when there are missing values. The per-
iteration complexity is still similar to the unconstrained ALS
algorithm, again by exploiting Cholesky caching and warm
start. The goal is to provide a simple algorithmic framework
for constrained matrix and tensor factorization which main-
tains the cheap per-iteration complexity and monotone reduc-
tion of the cost function, while providing flexibility in terms
of constraints and faster convergence.
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