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ABSTRACT
We consider the problem of non-orthogonal joint diagonaliza-
tion of a set of non-symmetric real-valued third-order tensors.
This appears in many signal processing problems and it is in-
strumental in source separation. We propose a new Jacobi-
like algorithm based on an LU decomposition of the so-called
diagonalizing matrices. The parameters estimation is done
entirely analytically following a strategy based on a classical
inverse criterion and a fully decoupled estimation. One im-
portant point is that the diagonalization is directly done on
the set of third-order tensors and not on their unfolded ver-
sion. Computer simulations illustrate the overall good perfor-
mances of the proposed algorithm.

Index Terms— Blind Source Separation, Independent
Component Analysis, Joint Diagonalization, Third-Order
Tensors.

1. INTRODUCTION

Joint diagonalization of sets of matrices or tensors is an im-
portant issue in source separation and independent component
analysis (ICA) [1] [2]. It takes its origin in the two important
papers [3] and [4] where the orthogonal joint diagonalization
of matrices and the orthogonal diagonalization of a fourth-
order tensor are introduced respectively in link with ICA. A
generalization to statistics of any order greater than two is
done in [5] and the specific case of the orthogonal joint diag-
onalization of third-order tensors is considered in [6].

Nowadays, attention has focused on the non-orthogonal
joint diagonalization of matrices, see e.g. [7], [8] and refer-
ences there in. A non-orthogonal diagonalization is important
mainly because it allows to skip a first processing step (called
whitening in source separation) that limits the performances
in practice. Numerous such algorithms have been devised.
Among them, the Jacobi-like ones have the main advantage to
be simple to implement, especially when one is able to derive
an analytical solution. These procedures allow to tackle large
dimension matrices and offer very good performances, see
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e.g. [9] – [14]. Moreover these methods often allow a poten-
tial computational parallelism. Concerning tensors, Canoni-
cal Polyadic Decomposition (CPD) [15]- [17] is a well-known
multi-way decomposition that can be interpreted as the diag-
onalization of a single tensor. The non-orthogonal joint diag-
onalization of tensors is an open problem as such. To our best
knowledge, even if a link exists with CPD, it seems that no
works has directly been devoted to.

In this paper, we propose a Jacobi-like algorithm for the
non-orthogonal joint diagonalization of non-symmetric real-
valued third-order tensors. To our best knowledge, this is one
of the first algorithm for non-unitary simultaneous tensor di-
agonalization. It is based on an LU parameterization of the
so-called diagonalizing matrices. Contrary to the diagonaliza-
tion of a third-order tensor which is handled in the literature
as a problem of joint diagonalization of matrices unfolding
the target tensor, in this paper we directly work on the tensors
in order to joint diagonalize them, thus avoiding potential pre-
processing step. We present two approaches of the algorithm
based on a fully decoupled parameters estimation that allows
an entirely analytical resolution for each approach. Numeri-
cal simulations illustrate the algorithm performances for both
approaches and provide a comparison with the CPD algorithm
based on the Alternate Least Squares (ALS) developed in the
Matlab toolbox [18].

2. PROBLEM FORMULATION

We consider a set of third-order cubic N ×N ×N , N ∈ N∗ \
{1}, real-valued tensors T(k) =

(
Ti1i2i3(k)

)
, k = 1, . . . ,K,

K ∈ N∗ \ {1} and (i1, i2, i3) ∈ {1, . . . , N}3. The tensors
T(k) are assumed to ideally follow the following component-
wise decomposition

Ti1i2i3(k) =

N∑
j1,j2,j3=1

Dj1j2j3(k)A1,i1j1A2,i2j2A3,i3j3 (1)

where Ax =
(
Ax,ij

)
for x ∈ {1, 2, 3} are three N × N

invertible matrices, called factor matrices, and D(k) =(
Dj1j2j3(k)

)
are K diagonal tensors of dimension N ×N ×
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N , i.e. Dj1j2j3(k) = Dj1j2j3(k)δj1j2j3 where (j1, j2, j3) ∈
{1, . . . , N}3 and δj1j2j3 = 1 if j1 = j2 = j3 and 0 otherwise.
In the following, the relation (1) will be denoted for all tensor
components as

T(k) = D(k)×1 A1 ×2 A2 ×3 A3. (2)

In practice, these tensors are typically obtained by some sam-
ple statistics through a finite number of data. The goal is,
from only data tensors T(k), k = 1, . . . ,K, to identify the
inverse matrices, denoted by Bx, of matrices Ax, for all x ∈
{1, 2, 3}. Bx are the so-called diagonalizing matrices. In or-
der to do this, we introduce the transformed tensors defined
as

R(k) = T(k)×1 B1 ×2 B2 ×3 B3. (3)

If each Bx is equal to the inverse of the respective Ax (up
to scaling factors and permutations) then it is easily seen that
R(k) are diagonal tensors. Thus the purpose is to find the
matrices Bx such that R(k) all are diagonal tensors.

In practice, this joint diagonalization of third-order ten-
sors is done only in an approximate way because the set T(k)
is estimated from statistics or other analysis operators. Clas-
sically, the approximation is measured using a criterion. In
this paper, we propose to focus on a so-called inverse crite-
rion defined as

J (Bx) =

K∑
k=1

‖ZTdiag {R(k)}‖2 (4)

where ‖·‖ is the Frobenius norm and ZTdiag {·} is the zero
diagonal tensor (with all zeros on the diagonal) built from the
tensor argument. Once the criterion is fixed, the problem be-
comes an optimization one. Here one has to search for matri-
ces Bx minimizing J .

Remark: Because D(k) are diagonal tensors for all k,
there is a link between the decomposition in (1) and the CPD
of a fourth order tensors. Indeed, we have

Ti1i2i3(k) =

N∑
j=1

Djjj(k)A1,i1jA2,i2jA3,i3j (5)

that is readily written as

T ′i1i2i3k =
N∑
j=1

A4,kjA1,i1jA2,i2jA3,i3j (6)

where A4,kj = Djjj(k) and T ′i1i2i3k = Ti1i2i3(k) for all in-
dex values. This last writing is directly the CPD of the fourth-
order tensor T′ =

(
T ′i1i2i3k

)
.

3. PROPOSED ALGORITHM

3.1. Parameterization

An obvious solution minimizing the criterion J in (4) is
Bx = 0 for all x ∈ {1, 2, 3} and where 0 is the zero matrix.

Of course this solution is a degenerate one. Moreover we
assumed that all diagonalizing matrices are invertible. That is
why, it is important to consider a specific constraint on each
matrix Bx allowing to find invertible solutions. For this, we
constrain each matrix Bx to have a unit determinant. A way
to do that consists of using an LU parameterization of each
matrix Bx. It is well-known that all square matrices can be
decomposed as DPLU, where D is a diagonal matrix, P is a
permutation matrix and L and U are, respectively lower and
upper triangular matrices with diagonal components all equal
to 1. Thus, let us notice that det(L) = 1 and det(U) = 1
in such a way that LU has also a unit determinant. Since
we are looking for matrices Bx up to scaling factors and
permutations then D and P are useless. Then it remains to
estimate the diagonalizing matrices all as Bx = LxUx for
all x ∈ {1, 2, 3}. Following [9] and [14], we here propose
to estimate matrices Lx and Ux in an alternate way, i.e. by
deriving Ux while keeping fixed Lx and vice versa.

3.2. Jacobi procedure

The Jacobi procedure consists of decomposing each Ux and
Lx matrices by a product of N(N−1)

2 elementary matrices as

Ux =

N−1∏
i=1

N∏
j=i+1

Uij
x and Lx =

N−1∏
i=1

N∏
j=i+1

Lij
x . (7)

The elementary matrices Uij
x and Lij

x each correspond to an
N ×N identity matrix but by replacing the (i, j), i < j com-
ponent by uijx for Uij

x and by replacing the (j, i), i < j com-
ponent by `ijx for Lij

x . We can notice that each elementary
matrices Uij

x (respectively Lij
x ) depends only on one param-

eter uijx (respectively `ijx ). Finally, for all x ∈ {1, 2, 3}, Bx is
assumed to follow the decomposition

Bx =

N−1∏
i=1

N∏
j=i+1

Lij
x

N−1∏
i=1

N∏
j=i+1

Uij
x . (8)

3.3. Proposed algorithm

One of our main goal is to find a direct analytical minimizing
solution for each parameter. For that, we consider the estima-
tion of uijx and we directly use the criterion J in (4) on Uij

x .
This reads

J (Uij
x ) =

K∑
k=1

∥∥ZTdiag {Rij(k)
}∥∥2 (9)

where

Rij(k) = R(k)×1 U
ij
1 ×2 U

ij
2 ×3 U

ij
3 . (10)

Each matrix Uij
x has a linear impact on a slice of R(k), Uij

1

on the slice defined by {(i, p, q) | (p, q) ∈ {1, . . . , N}2}, Uij
2
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on the slice {(p, i, q) | (p, q) ∈ {1, . . . , N}2} and Uij
3 on

{(p, q, i) | (p, q) ∈ {1, . . . , N}2}. Thus, in (10), the com-
ponents of R(k) located at the intersection of at least two
of these slices are transformed by at least two matrices Uij

x .
Thus, at these locations, the components of Rij(k) are non-
linear equations in at least two uijx . If we directly minimize
(9) for estimating all Uij

x , as in [9] for the matrix case, these
non-linear terms do not allow an analytical solution.

Nevertheless, we can overcome this issue by estimating
each Uij

x in a decoupled way, i.e. estimating Uij
1 for fixed

Uij
2 and Uij

3 , then updating R(k) and B1 and then doing the
same for the two other matrices recursively. This proposed al-
gorithm is called T-ALUJA for Tensorial Alternate LU Jacobi
Algorithm.

4. PARAMETERS DERIVATION

For a given (i, j) with i < j, we now derive the parameters
minimizing J in (9). We only consider Uij

x since for Lij
x , all

follows the same lines.
In this section, we propose two different approaches. The

first one is a classical one by using directly the criterion (9) for
the parameters estimation. It just consists of taking into ac-
count all the off-diagonal components impacted by the trans-
formation (10). The second approach is similar but adapted
to the case where we are close to a diagonalizing solution. In
the following, we only develop the derivations for Uij

1 . For
the other Uij

2 and Uij
3 , all may be simply deduced by indexes

permutations.

4.1. Classical approach

Let us derive the optimal solution for Uij
1 setting Uij

2 and Uij
3

to the identity. Hence (10) becomes

Rij
1 (k) = R(k)×1 U

ij
1 . (11)

Let the sets N = {1, . . . , N} and P = N \ {i}, the compo-
nents of Rij

1 (k) can be read

Rij
1,imn(k) = Rimn(k) +Rjmn(k)u

ij
1

Rij
1,pmn(k) = Rpmn(k) (12)

with (m,n) ∈ N 2 and p ∈ P .
Let us define the setsQ = {

(
(i, b, c) | (b, c) ∈ N 2

)
\ (i, i, i)}

and S = {
(
(a, b, c) | a ∈ P, (b, c) ∈ N 2

)
\ {(p, p, p) | p ∈

P}}, we can also rewrite J in (9) as

J (uij1 ) =
K∑

k=1

{ ∑
(i,m,n)∈Q

Rij 2
1,imn(k) +

∑
(a,b,c)∈S

Rij 2
1,abc(k)

}
.

(13)

Now using (12) in (13) leads to

J (uij1 ) =
K∑

k=1

{ ∑
(i,m,n)∈Q

(
Rimn(k) +Rjmn(k)u

ij
1

)2
+

∑
(a,b,c)∈S

R2
abc(k)

}
. (14)

We now have to solve ∂J /∂uij1 = 0. After straightforward
derivations, we obtain the following analytical optimal solu-
tion

uij1 = −

K∑
k=1

∑
(i,m,n)∈Q

Rimn(k)Rjmn(k)

K∑
k=1

∑
(i,m,n)∈Q

R2
jmn(k)

. (15)

4.2. Adapted approach

A close look at the above derivations shows that some trans-
formed tensor components are more weighted than the others.
Suppose that we are close to a diagonalizing solution in the
sense that for all k ∈ {1, . . . ,K}, all R(k) off-diagonal com-
ponents have a very small magnitude in comparison to the
R(k) diagonal component with the smallest one, i.e. for all
(a, b, c) ∈ {N 3 \ {(p, p, p)|p ∈ N}}, |Rabc(k)| � 1. It is
then rather easy to show that |uijx | � 1 for all x ∈ {1, 2, 3}.
Thus in (12), in the first equation, for (m,n) ∈ {N 2 \ (j, j)},
|Rjmn(k)u

ij
1 | � |Rimn(k)|, so this equation can be approx-

imated by

Rij
1,imn(k) ≈ Rimn(k). (16)

Hence, in Rij
1 (k) after the transformation (11), it approxi-

mately remains only one non-constant off-diagonal compo-
nent that is

Rij
1,ijj(k) = Rijj(k) +Rjjj(k)u

ij
1 . (17)

Finally, using (16) and (17) in (13), after straightforward
derivation, (15) can be approximated by

uij1 ≈ −

K∑
k=1

Rijj(k)Rjjj(k)

K∑
k=1

R2
jjj(k)

. (18)

Comparing with the classical approach, the complexity of
each parameter estimation is reduced. Moreover the estima-
tions of uij1 , uij2 and uij3 are now independent. Indeed the
R(k) update using this approximate solution have no influ-
ence on the estimation of uij2 and uij3 . Hence the estimation
of these three parameters can be done all together in a same
loop. This is a clear supplementary advantage.
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5. COMPUTER SIMULATIONS

We now illustrate the performances of the proposed T-ALUJA
algorithm by considering the two versions. The one using the
classical approach is simply denoted by T-ALUJA and the one
using the adapted approach is denoted by T-ALUJA-A. We
also compare them with CPD-ALS algorithm given in [18].

In order to evaluate the algorithm performances, we use
the performance index proposed in [5] [19] [20]. It com-
pares each matrix Sx = BxAx = (Sx,ij) to the product of
a permutation matrix and a diagonal matrix. It is defined by

I(Sx) =
1

2N(N − 1)
I ′(Sx) where

I ′(Sx) =

N∑
i=1

 N∑
j=1

|Sx,ij |2

S2
x,r

− 1

+

N∑
j=1

(
N∑
i=1

|Sx,ij |2

S2
x,c

− 1

)
(19)

with S2
x,r = max

m
|Sx,im|2 and S2

x,c = max
m
|Sx,mj |2. This

normalized index is zero if Sx satisfies Bx = DPA−1x . For
the CPD-ALS algorithm, we first identify the three estimated
matrices Ãx corresponding to each searched matrices Ax and
we directly consider Sx = Ã−1x Ax. Finally we take the mean
value of I(Sx) for x ∈ {1, 2, 3}.

We consider 10 real-valued tensors of size 10 × 10 × 10
defined as T(k) + tN(k) where N(k) are noise tensors and
t represents the noise level. All components of matrices Ax

and diagonal tensors D(k) follow a uniform law on [−1, 1]
whereas the components of N(k) follow a zero mean unit
variance normal distribution. Each Bx is initialized randomly
by using a zero mean unit variance normal distribution.

Fig. 1. Performance index versus the number of sweeps for 10
tensors of size 10 × 10 × 10 in a noiseless context (superpo-
sition of 100 independent draws).

The Fig. 1 displays the index value w.r.t. the sweeps of the
two proposed Jacobi-like algorithms and CPD-ALS one for
100 independent draws for t = 0. Even if the initialization of

each Bx is done a priori far from any diagonalizing solution,
T-ALUJA-A presents a much better convergence speed than
T-ALUJA and CPD-ALS. T-ALUJA-A presents also a stan-
dard deviation that is also very good within the 100 draws
by always converging between the fourth and the sixth sweep
while for T-ALUJA it is between the seventeenth and the for-
tieth sweep whereas CPD-ALS diverges for four draws and
gets a real large standard deviation for the converging ones
(from the seventeenth sweep to the three hundred and sixth
one).

Fig. 2. Performance index versus the number of sweeps for 10
tensors of size 10 × 10 × 10 in the noisy context t = 10−4

(superposition of 100 independent draws).

The Fig. 2 displays the index value w.r.t. the sweeps of the
two Jacobi-like algorithms and CPD-ALS for 100 indepen-
dent draws for t = 10−4. Once again, T-ALUJA-A exhibits
a much better convergence speed than the two other algo-
rithms. Moreover, T-ALUJA-A also reaches a better average
level of performance after 500 sweeps with −39.7dB against
only −29.9dB for CPD-ALS and −20.8dB for T-ALUJA.
Notice that, once again, the proposed algorithms are more ro-
bust than CPD-ALS of which two draws diverge. However,
for the converging draws, CPD-ALS seems to often achieve a
better level of performance than T-ALUJA-A.

Finally, the Fig. 3 displays the mean level of performance
after 500 sweeps for 500 independent draws w.r.t. the level
of noise t. T-ALUJA-A always reaches a better mean level
of performance than T-ALUJA. CPD-ALS exhibits a good
behavior in a very noisy context (t ≥ 10−3). Nevertheless,
CPD-ALS gets an almost constant mean level of performance
for each value of t. This is certainly due to some diverging
draws. Our T-ALUJA approach seems more robust.

6. CONCLUSION

We proposed one of the first Jacobi-like algorithm for the
non-orthogonal joint diagonalization of non-symmetric real-
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Fig. 3. Mean performance index obtained after 500 sweeps
versus the level of noise (500 independent draws of sets of 10
tensors of size 10× 10× 10 for each level of noise).

valued third-order tensors. It is based on an LU decompo-
sition and a fully decoupled estimation of the diagonalizing
matrices parameters. Two approaches of this algorithm have
been tackled. Each one rely on the analytical optimizing so-
lution using an inverse cost function. The first approach takes
into account all terms involved by the criterion whereas the
second one is based on a selection of involved terms by con-
sidering the proximity to a diagonalizing solution. The nu-
merical simulation illustrates the good behavior of both al-
gorithms. Nevertheless T-ALUJA-A provides a much better
convergence speed and accuracy than T-ALUJA in the simula-
tion framework. Moreover T-ALUJA-A compares favorably
to a CPD-ALS algorithm in term of robustness and conver-
gence speed.
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