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ABSTRACT

The well-known cooperative localization algorithm, ‘sum-

product algorithm over a wireless network’ (SPAWN) has

two major shortcomings, a relatively high computational

complexity and a large communication load. Using the Gaus-

sian mixture model with a model selection criterion and the

sigma-point (SP) methods, we propose the SPAWN-SP to

overcome these problems. The SPAWN-SP easily accommo-

dates different localization scenarios due to its high flexibility

in message representation. Furthermore, harsh LOS/NLOS

environments are considered for the evaluation of coopera-

tive localization algorithms. Our simulation results indicate

that the proposed SPAWN-SP demonstrates high localization

accuracy in different localization scenarios, thanks to its high

flexibility in message representation.

Index Terms— Cooperative localization, SPAWN, low-

complexity, sigma-point methods

1. INTRODUCTION

For sensor network localization, a plethora of cooperative

localization algorithms have been proposed, including non-

Bayesian algorithms, such as [1, 2], and Bayesian ones. The

promising Bayesian cooperative localization algorithm, the

so-called ‘sum-product algorithm over a wireless network’

(SPAWN), has drawn an increasing attention [3]. However,

it suffers from a high computational complexity and a large

communication overhead due to the particle-based approxi-

mation of messages. Recent work showed that the parametric

SPAWN, which approximates the messages using certain

parametric models, requires significantly less computational

and communication efforts. However, the parametric models

must be specially tailored for different localization scenar-

ios [4, 5]. In sigma point belief propagation (SPBP), the

belief propagation (BP) or sum-product algorithm (SPA) is

reformulated in a higher dimensional space so that the belief

update procedure turns to a nonlinear filtering process, which

is addressed using the sigma point filters [6].

The original contributions of this paper are as follows. By

representing the messages in a new efficient way, with the

aid of the sigma-point (SP) methods, we propose a new low-

complexity SPAWN variant, the SPAWN-SP . The SPAWN-

SP is comprehensively evaluated in terms of complexity, com-

munication load and localization accuracy. Unlike in previous

work on SPAWN, we consider mixed LOS/NLOS environ-

ments with imperfect NLOS identification.

This paper is organized as follows. Section 2 introduces

the problem at hand. Section 3 briefly reviews the particle-

based SPAWN and the existing parametric SPAWN. In Sec-

tion 4 we propose the SPAWN-SP algorithm. The localization

accuracy of the SPAWN-SP is comprehensively evaluated in

Section 5. Finally, Section 6 concludes this paper.

2. PROBLEM FORMULATION

Consider a wireless sensor network with N sensor nodes in a

two-dimensional (2-D) space, although extension to the 3-D

case is straightforward. There are Nu nodes with unknown

positions, called agents, and Na nodes with given positions,

called anchors. Let Nall = {1, 2, · · · , N} be the index set

of all nodes and Nu = {1, 2, · · · , Nu} be the index set of

all agents. The 2-D position of node i is denoted by xi =
[xi, yi]

T
and it is modeled stochastically with a priori prob-

ability pi(xi) for i ∈ Nall. Restricted by the communica-

tion range Rc, node i can communicate with only a subset of

nodes, which are called its neighbors and whose index set is

denoted by N→i.

The statistical measurement model is given by

zji = dji + vji, j ∈ N→i, i ∈ Nall, (1)

where zji is the distance measurement obtained at node i,
dji = ||xj − xi|| is the Euclidean distance between two

nodes and vji is the measurement error. A collection of all

measurements is denoted by a vector z. We assume that

the LOS and NLOS measurement error follows the statis-

tical models pL (v;βL) with the parameter vector βL and

pNL (v;βNL) with the parameter vector βNL, respectively.

Using NLOS identification techniques, for instance from [7],
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we assume that NLOS identification results of all measure-

ments are available.

With the two assumptions that all measurements are

statistically independent and the a priori probabilities of

all sensors are independent, the joint posterior distribution

p (x1, · · · ,xN |z) is written as

p (x1, · · · ,xN |z) ∝ p (z|x1, · · · ,xN ) p (x1, · · · ,xN )

=

N
∏

i=1

pi(xi)
∏

j∈N→i

p (zji|xi,xj) .
(2)

The goal is to find the marginal posterior distribution p (xi|z)
of each agent position and ultimately give a point estimate.

3. REVISITING COOPERATIVE LOCALIZATION

ALGORITHMS

3.1. The Classical (particle-based) SPAWN

The marginal posterior distribution p (xi|z) could be ob-

tained by integrating p (x1, · · · ,xN |z), however at a pro-

hibitively high computational cost. Alternatively, using the

sum-product algorithm (SPA), the marginalization is largely

facilitated, giving rise to the so-called ‘SPA over a wire-

less network’ (SPAWN) [3]. The gist of the SPAWN is to

iteratively update belief messages according to the update

procedure as follows:

Iηji(xi) =

∫

p(zji|xi,xj)B
η
j (xj)dxj (3)

B
(η+1)
i (xi) ∝ pi(xi)

∏

j∈N→i

Iηji(xi), (4)

where the superscript η is the iteration index, p(zji|xi,xj)
is a likelihood function and Bη

j (xj) and Iηji(xi) are the be-

lief message and internal message, respectively. The internal

message Iji(xi) is maintained only inside agent i and con-

tributes to the update of Bi(xi). Note that Bi(xi) indicates

uncertainty about xi. After several iterations, it approaches

the marginal distribution p(xi|z) under certain conditions [3].

The nonlinear relationship in p(zji|xi,xj) and the non-

Gaussian uncertainty of Bj(xj) make the analytical evalu-

ation of Eq. (3) and Eq. (4) infeasible. Representing the

messages based on particles, enables the update procedure,

giving rise to the particle-based SPAWN. We choose node i
to illustrate the update procedure at the ηth iteration. Node i

starts with broadcasting its belief message {xr,η
i , wr,η

i }
R

r=1,

where x
r,η
i is the particle and wr,η

i is the corresponding

weight. Once Bη
j (xj) is received,

{

x
r,η
ji , wr,η

ji

}nR

r=1
(n is

a scaling factor) are generated to approximate Iηji(xi) as

detailed in [5]. Next, the particle-based approximation of

B
(η+1)
i (xi) is obtained by drawing

{

x
r,(η+1)
i

}nR

r=1
from a

proposal distribution qη (xi), e.g., the sum of internal mes-

sages, and subsequently computing the weights

w
r,(η+1)
i ∝

pi(x
r,(η+1)
i )

∏

j∈N→i
Iηji(x

r,(η+1)
i )

qη
(

x
r,(η+1)
i

) (5)

qη(x
r,(η+1)
i ) =

∑

j∈N→i

Iηji(x
r,(η+1)
i ), (6)

where Iηji(xi) approximates to

Iηji(xi) ≃
nR
∑

r=1

wr,η
ji N

(

xi;x
r,η
ji ,H

)

, (7)

where H is an appropriately chosen covariance matrix and

N
(

xi;x
r,η
ji ,H

)

denotes the Gaussian distribution with mean

x
r,η
ji and covariance matrix H. The analytical approximation

of Iηji(xi) in Eq. (7) is visualized in Fig. 1a, and Figs. 1b–

1d depict other approximations, which will be explained later.

Finally, a further resampling step can be conducted to achieve

equally weighted samples
{

x
r,(η+1)
i

}R

r=1
and 2R real num-

bers are required to represent B
(η+1)
i (xi). In Table 1 gives

the complexity and communication requirement based on one

agent at one iteration step are listed. The computation of the

weights using Eq. (5) and Eq. (7) is the most computationally

demanding part, requiring O(R2) operations; the communi-

cation requirement is 2R real numbers.

3.2. The Parametric SPAWN

With the aim to reducing complexity and the communication

load, the parametric SPAWN has been proposed. The work

in [5] demonstrates that the belief message Bη
i (xi) can be

approximated by a mixture of K Gaussian distributions,

Bη
i (xi) ≃

K
∑

k=1

αk,η
i N

(

xi;µ
k,η
i ,Σk,η

i

)

, (8)

where αk,η
i is the mixing component. Accordingly, the com-

munication overhead reduces to 6K − 1 real numbers, where

K is negligible as compared to R. For an efficient computa-

tion of the weights, according to Eq. (5), analytical approxi-

mation of the internal message is highly desirable. With the

assumption of a Gaussian distributed measurement error, the

following parametric model for the internal message was pro-

posed in [4],

Iηji(xi) ≃
K
∑

k=1

αk,η
ji C

(

xi; ρ
k,η
ji , (xµ)

k,η

ji
,
(

σ2
)k,η

ji

)

, (9)

where C(x; ρ,xµ, σ
2) is a specially designed function, de-

picted in Fig. 1b. More details about the C function can be

found in [4]. Instead of Eq. (7), the parametric representation

Eq. (9) is utilized for the calculation of the weights in Eq. (5),

which requires O(R) operations.
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(a)
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(b) (c) (d)

Fig. 1: Visualization of the analytical approximations of Iji(xi) in the special case of Bj(xj) being unimodal, namely K = 1. (a) shows

the analytical approximation Eq. (7), summation of multiple Gaussian kernels, where the blue net represents one Gaussian kernel. (b) depicts

the parametric approximation Eq. (9) and gives a simple graphical explanation about the parameters
{

ρ,xµ, σ
2
}

of C(x; ρ,xµ, σ
2). (c)

shows the likelihood function p(zji|xi, s
r
j ), where xi is the argument and the sigma point srj , depicted as the red point, is a known variable.

(d) visualizes the analytical approximation Eq. (13) in the SPAWN-SP, that summation of several p(zji|xi, s
r
j). As the number of particles

goes to infinity, Eq. (7) achieves the most accurate approximation. Among the other two analytical approximations, Eq. (13) provides more

flexibility in representing messages of different shapes, i.e., symmetric or asymmetric, since the likelihood function is preserved in Eq. (13);

while Eq. (9) is a symmetric parametric model.

4. THE SPAWN-SP

Despite the reduction of complexity and communication over-

head, two problems of the existing parametric SPAWN remain

to be solved. First, a fixed number of Gaussian components in

Eq. (8) fails to achieve a good balance of the communication

load and the accuracy of representing the belief messages. We

propose to choose an appropriate number of Gaussian compo-

nents individually for each belief message, making use of the

greedy expectation maximization (EM) algorithm [8]. Sec-

ond, the parametric model for the internal messages requires

to be specially tailored to different localization scenarios, oth-

erwise, a model mismatch may lead to localization perfor-

mance degradation. In our work, we develop, with the aid of

sigma-point methods, a novel analytical approximation com-

prised of the original form of the likelihood function. The

proposed algorithm is highly flexible to measurement error

distributions.

The belief message Bη
i (xi) in Eq. (8) should be rewritten,

with Kη
i instead of K , as

Bη
i (xi) ≃

K
η

i
∑

k=1

αk,η
i N

(

xi;µ
k,η
i ,Σk,η

i

)

, (10)

where Kη
i can be determined according to a model selection

criterion, based on a sequence of mixture parameters com-

puted from the greedy EM [8]. Subsequently, we have the

internal message with the following representation

Iηji(xi) =

K
η

j
∑

k=1

αk,η
j

∫

p (zji|xi,xj)N
(

xj ;µ
k,η
j ,Σk,η

j

)

dxj .

(11)

It is apparent from Eq. (11) that the integrand is of the special

form: nonlinear function × Gaussian distribution function.

Such an integral can be effectively approximated by sigma-

point methods, such as the Unscented transform [9]. The

principle is to deterministically choose a small set of sigma

points and then approximate the integral using the weighted

summation of the nonlinear function at those sigma points

[9]. For the integral Gk,η
ji (xi), which is the short-hand no-

tation of the integral explicitly shown in Eq. (11), a small

set of weighted sigma points is determined and denoted by
{

s
k,r,η
j , uk,r,η

j

}Rsp

r=1
, where s

k,r,η
j is the sigma point, uk,r,η

j is

the weight, and Rsp is negligible as compared to R. Accord-

ingly, the analytical approximation of Gk,η
ji (xi) is obtained as

Gk,η
ji (xi) ≃

Rsp
∑

r=1

uk,r,η
j p

(

zji|xi, s
k,r,η
j

)

. (12)

By inserting Eq. (12) into Eq. (11), we yield the final analyt-

ical approximation of the internal messages

Iηji(xi) ≃

K
η

j
∑

k=1

αk,η
j

Rsp
∑

r=1

uk,r,η
j p

(

zji|xi, s
k,r,η
j

)

. (13)

A visualization of this analytical approximation is given in

Fig. 1c and Fig. 1d. Note that a special case of Eq. (13) is

Iηji(xi) ≃
R
∑

r=1

wη
j p

(

zji|xi,x
r,η
j

)

, (14)

when the whole set of particles of Bη
j (xj) is used [10], in-

stead of Kη
j sets of sigma points. For the calculation of the

weights, Eq. (13) is used instead of Eq. (7) or Eq. (9),

requiring operations of the order O(R). We name the pro-

posed algorithm as SPAWN-SP and the complete algorithm

is outlined in Algorithm 1. The communication overhead and

complexity of the SPAWN-SP are given in Table 1, where

K̄ = 1
Nite

1
N

∑Nite

η=1

∑N

i=1 K
η
i and Nite is the number of itera-

tions.
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Algorithm 1 SPAWN-SP

1: Initialize:

B1
i (xi) = pi(xi), i ∈ Nall .

2: for η = 1, . . . , Nite do

3: for all nodes in parallel, e.g., node i do

4: Broadcast
{

αk,η
i ,µk,η

i ,Σk,η
i

}K
η

i

k=1
.

5: Receive belief messages from neighbors.

6: Draw nR particles from the proposal distribution.

7: For each neighbor’s belief message, generate

weighted sigma points.

8: Compute the weights
{

w
r,(η+1)
i

}nR

r=1
using

Eq. (5) and Eq. (13) .

9: Refine the parameter set
{

α
k,(η+1)
i ,µ

k,(η+1)
i ,Σ

k,(η+1)
i

}K
(η+1)
i

k=1
.

10: end for

11: end for

Note that the SPAWN-SP and the SPBP are two totally

different algorithms. In the SPAWN-SP, the SP plays a role in

facilitating the analytical representation of the internal mes-

sages. In the SPBP, the belief update is reformulated into

a nonlinear filtering process, which is addressed using the

SP filters. However, an unrealistic prerequisite in the SPBP

is that the belief messages are characterized using their first

two moments, which are surely insufficient to characterize the

multimodal messages.

Two options for the likelihood function p (zji|xi,xj) are

considered. The NLOS identification result Ĥji has binary

values 0 and 1 for LOS and NLOS, respectively. The most

straightforward alternative reads

p (zji|xi,xj) =

{

pL (zji − dji;βL) if Ĥji = 0,

pNL (zji − dji;βNL) otherwise.
(15)

The second alternative [11] consists of both hypotheses

p (zji|xi,xj) = Pr
(

L|Ĥji

)

pL (zji − dji;βL)+

Pr
(

NL|Ĥji

)

pNL (zji − dji;βNL) ,
(16)

where Pr
(

L|Ĥji

)

is the probability of zji being a LOS mea-

surement conditional on the identification result Ĥji.

5. SIMULATION RESULTS

5.1. Simulation setup

The localization accuracy of the SPAWN-SP is extensively

evaluated in comparison with the particle-based SPAWN and

the parametric SPAWN. The SPBP is not considered as it re-

quires rather accurate initialization to achieve comparable ac-

curacy as compared to other SPAWN variants. For each sim-

ulation, 100 Monte Carlo trials are conducted. The sensor

Algorithms Complexity Communication Load

Particle-based SPAWN O(R2) 2R

Parametric SPAWN O(R) 6K − 1

SPAWN-SP O(R) 6K̄ − 1

Table 1: Analysis on complexity and communication load.

Parameters Values Description

R 500 Number of particles for belief messages

n 2 Scaling factor

Rsp 5 Number of sigma points

K 3 Mixture components

Nite 15 Number of iterations

Table 2: Parameters for simulations.

network is defined over a 40 m × 40 m area and contains 6
anchors and 10 agents. A fixed uniform deployment is de-

fined for these anchors. The agents’ positions are randomly

chosen for each trial, according to a uniform distribution. A

collection of other parameters is listed in Table 2.

5.2. Simulation results

First, the impact of the two likelihood functions Eq. (15) and

Eq. (16) on the localization accuracy is investigated. Two

statistical models of measurement errors, namely pL and pNL,

are set as N (0, 0.22) and N (µNLOS, 3.2
2), respectively. Ad-

ditionally, Rc is set to 20 m. The localization RMSEs are

depicted in Fig. 2, where, the ’SPAWN-SP-hard-10’ in the

legend means the SPAWN-SP with Eq. (15) in the case of a

misidentification rate of 10%. It is apparent from Fig. 2, that

the SPAWN-SP-soft consistently outperforms the SPAWN-

SP-hard over µNLOS and a range of misidentification rates, re-

vealing the benefit provided by Eq. (16) thanks to its two hy-

potheses. As the misidentification rate goes from 10% up to

15%, the advantageous performance of the SPAWN-SP-soft

over the SPAWN-SP-hard becomes more apparent.

In the following simulations, Eq. (16) is chosen for all

SPAWN variants. Next, the proposed algorithm is evaluated

over different communication ranges Rc with pL and pNL set

as N (0, 0.22) and N (4.4, 3.22), respectively [11]. As de-

picted in Fig. 3, the localization RMSEs of three algorithms

monotonically go down as Rc increases. This result is quite

logical, since increasing the communication range results in

more distance measurements and accordingly the localization

performance is improved. The SPAWN-SP slightly outper-

forms the parametric SPAWN and the particle-based SPAWN

for Rc being larger than 20 m. For Rc smaller than 20 m, the

parametric SPAWN is slightly superior to the others, since a

good match between its parametric model Eq. (9) and the

true internal message exists in this case. For increased Rc,

the symmetric model Eq. (9) deviates from the true internal

message. Namely, in the case of Gaussian distributed noise
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ferent NLOS distributions.

and small distance measurements, the analytical model Eq.

(9) achieves a good match. The inferior performance of the

particle-based SPAWN is caused by insufficient particles.

In the last simulation, three algorithms are compared in

three different scenarios, where the NLOS error follows the

Gaussian distribution, the exponential distribution or the uni-

form distribution. The same parameters are chosen for the

LOS error and the NLOS Gaussian distributed error. The Rc

is set to 20 m. Let the mean of the exponential distribution

be 1/0.38 and we choose U [0, 11) as the uniform distribution

(Fig. 6(e) in [11]). In Fig. 4, it is observed that the SPAWN-

SP outperforms the other two competitors by far in the ex-

ponential and uniform cases, while it performs slightly worse

than the existing parametric SPAWN in the Gaussian case for

the reason given in the second simulation. The superiority of

the SPAWN-SP over the existing parametric SPAWN in the

non-Gaussian cases is attributed to the suitability of Eq. (13)

in characterizing the internal messages. This result verifies

the high flexibility offered by the proposed SPAWN-SP, and

the potential performance degradation of the existing para-

metric SPAWN due to a strong model mismatch. Regarding

the convergence speed, they all reach the converged results

after 5 iterations. Note again that the particle-based SPAWN

can improve its performance by enlarging the internal mes-

sages’ particle number, at an increasing computational cost.

6. CONCLUSIONS

We proposed a novel cooperative localization algorithm, the

SPAWN-SP, which requires less computational and commu-

nication cost than the classical particle-based SPAWN. As

compared to the existing parametric SPAWN, the SPAWN-SP

requires similar computational and communication cost, but

achieves higher localization accuracy in different LOS/NLOS

scenarios, owing to its flexibility in message representation.
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and E. G. Larsson, “Measurement analysis and channel mod-

eling for TOA-based ranging in tunnels,” IEEE Trans. Wireless

Commun., vol. 14, no. 1, pp. 456–467, Jan. 2013.

23rd European Signal Processing Conference (EUSIPCO)

189


