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ABSTRACT

We provide a time-domain analysis of the stability for two
adaptive algorithms of gradient type that interfere with each
other via their update errors. Such coupling can occur natu-
rally as well as by desire of the designer. Especially, system
identification algorithms that combine two adaptive schemes
can often be described by such a structure. We derive pre-
cise statements on local contracting/expanding behaviour that
in turn allow to deduce bounds ensuring Lyapunov stability.
The application of our findings to a specific example shows
how these bounds are obtained and how they outperform our
previous results that were based on the small gain theorem.

Index Terms— gradient type algorithms, system identifica-
tion, Lyapunov stability, convergence, contraction mapping

1. INTRODUCTION

In this paper, we consider a structure of two gradient type
adaptive algorithms that interfere with each other due to a lin-
ear memoryless coupling among their individual update er-
rors. Based on our original idea [1], we investigate the con-
tracting behaviour of the varying coefficient matrix for the un-
derlying homogeneous system of difference equations. This
leads to the main result of this paper, Theorem 1, which pro-
vides precise quantitative statements regarding local increase
or decrease of the parameter error vectors (PEVs). These
statements in turn, open up access to conditions ensuring Lya-
punov stability [2]. In our previous work [3], the obtained
lo-stability bounds were rather conservative as they relied on
the small gain theorem [4]. By the here presented novel re-
sults much tighter stability bounds can be deduced. We illus-
trate this claim by an example in Sec. 4, for which the ob-
tained stability criteria are indeed found to be tight.

The here analysed structure may unintentionally occur due
to some cross-talk or interference, and of course, due to the
designers will. However, its relevance goes far beyond that, as
especially many adaptive system identification schemes can
be mapped to it and are thus inherently covered by this work.
The class of such schemes includes for example algorithms
that combine different adaptive filters to fuse their beneficial
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properties, e.g., fast convergence (short filter) and high ac-
curacy (long filter) [S], cascaded structures like the adaptive
Wiener and Hammerstein models [6-8], as well as, neural net-
works that are trained by the backpropagation algorithm [9].
Hence, for the latter, the robustness result in [10] can be ex-
tended to more than one single neuron by our theory, as we
will publish elsewhere. Finally, least-mean-squares (LMS)
algorithms with matrix step-size, e.g., the proportionate nor-
malised LMS [11], are also found to be tightly related [12].

Notation: Throughout this paper, we assume that the ini-
tial iteration occurs at £ = 0. For some vectors a and b, the
column operator is meant in the sense col(a,b) = [aT, b']T.
The angle brackets (-) indicate a sequence of their argument.
The superscripts *, T, and 7, stand for the complex conjugate,
the transpose, and the conjugate transpose, respectively. The
parameter vectors of the unknown reference systems are de-
noted by g, h, the ones of the estimated systems by g, hy,.
Moreover, we assume that modelling uncertainties are cov-
ered by additive noise which allows to assume that the lengths
of g and h coincide with the lengths of g, and hy, respec-
tively [13]. Thus, we can introduce the PEVs, g, = g — g%
and flk =h — ﬁk Except for the PEVs, a tilde on top of
a scalar indicates that it is the noisy version of some noise-
less entity. Finally, N¢(n, 0?) is the complex-valued normal
distribution with mean 7 and variance o2.

Outline: The considered adaptive structure is introduced
in Sec. 2. Sec. 3 first establishes the connection to our re-
sults in [3], then it presents our novel analysis. Sec. 4 treats
a special configuration with strong symmetries and illustrates
the impact of our novel approach by numerical experiments.
Conclusions are drawn in Sec. 5. The proof of Theorem 1 is
sketched in the Appendix.

2. THE CONSIDERED COUPLED STRUCTURE

Consider two transversal filters g ()M, taps) and h (M}, taps),
each driven by the in general different scalar input sequences
(x(k)) and (u(k)), respectively. System uncertainties are
modelled at the output of g, respectively h, by the additive
noise sequences (vy(k)) and (vj,(k)). Thus, at iteration k, the
overall outputs of the filters g and h become (cmp. Fig. 1)

yo(k) = g'xp +vg(k),  yn(k) = hTug + vn(k),
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Fig. 1. Two adaptive filters with output errors coupled by the multi-
plicative cross-coupling factors vgp (k), vng(k). The auto-coupling
factors vg44 (k) and vp, (k) are similar to commonly used step-sizes.
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In a standard system identification problem, both filters
would be identified independently by two adaptive finite im-
pulse response filters, g, and flk. In this case, the LMS [13]
algorithm could be employed for adaptation, i.e., in terms of
the PEVs,

8rkt1 = 8k — Ng(k)xlt g(k)»
hy 1 = hy — pp(k)ugén(k),
with the noisy errors,

€q(k) = eg(k) +v4(k),

@)

én(k)

and their noiseless counterparts

eh(k) + Uh(k?),

eq(k) = g%y, — g1 x5 = &L Xk,
en(k) =hTuy — flluk. = flluk.

However, in this paper, we assume that this independence is
violated due to a linear memoryless coupling among the out-
put errors é,(k) and ép (k) as depicted in Fig. 1. Thus, the
pair of update errors becomes

ég(k) = Vgg(k)ég(k) + Vgh(k)éh(k)v
En(k) = van(k)en(k) + vng(k)éq(k),

with the cross-coupling factors vy, (k), vpg(k), and the auto-
coupling factors vy4 (k), v (k). All four coupling factors are
assumed to be real-valued, whereupon the latter two are typ-
ically but not necessarily non-negative. Additionally, for rea-
sons of structural clarity, the step-sizes in (2) are incorporated
into the coupling factors, leading to the update equations

hyp =hy —uién (k). 3)

gri1 = 8k — XiEy(k),
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We emghasise that the recursions in (3) still aim to minimise
|ég(k)|” and &5 (K)|?, separately. However, in contrast to (2),
due to the coupling, additional interference is introduced.

3. STABILITY ANALYSIS

In [3], we provided criteria for [5-stability of an equivalent
coupled structure. There, the step-sizes were assumed fixed.
As it is rather straightforward to modify the results in [3] to
varying step-sizes, we skip the derivation and refer the reader
to [14] for further details. Applying the so obtained expres-
sions to the structure in Fig. 1, yields the [»-stability condition

[vgn (k)vhg (k)| < [vgg(K)vnn (k)] 4
if for all &, the auto-coupling factors fulfil
van (k) < |[ugll3*.

2
Vg (k) < Ixklly ™,

This result is rather conservative as it is based on the small
gain theorem. In the next section, we go down a different path
which enables us to state tighter stability conditions.

3.1. Novel stability approach
In a first step, we discard all noise terms in (3) leading to

[gkﬂ} _ (I— {ygg(k:)XZXZ Vgh(k‘)x,*cul]> |:gk:| .
hyq vg(K)wix] vpn(k)ujup| ) [hy
(5)

In Sec. 3.2 we will justify this assumption. For the homoge-
neous recursion in (5), the following theorem holds for which
the proof is sketched in the Appendix.

B, eCMg+Mp) X (Mg +Mp)

Theorem 1 Consider recursion (5), or equivalently, (3) with
vg(k) = vy (k) = 0. Furthermore, let xj, # 0, uy, # 0, and

a(k) = 2vg9(k) — vgg (k)3 1* = visg (k) [uel*, (6)
Bk) = vgn (k) — vgg(k)vgn (k)31

+ vng (k) = vnn (R)vng (B) Jur|®, (D)
y(k) = 2vnn (k) = Vi (k) [ugl* = v, (B) i . (8)

With the three conditions

A. a(k)y(k) > B2(k),

B. a(k)xkl® + (k) [[ul* > 0,

C. a(k)llxxl? + (k) [[ukl* <0,
for increasing k, the (Euclidean) distance || col(gy, hy,)|| be-
tween the estimated parameter vector col(gy, flk) and the
vector col(g, h) of reference parameters

1. can never increase, if and only if (iff), A and B are true,

2. can never decrease, iff A and C are fulfilled,

3. cando both, increase or decrease, depending on x;, and

uy, iff A is violated, and B or C is satisfied,
4. is ensured to remain constant, iff B and C are violated.
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Although Theorem 1 only provides local statements, Cases 1,
2, and 4 directly translate to global statements. Only Case 3
does not directly provide insight to global behaviour. Here,
divergence and convergence of || col(gy, hy)|| can occur, de-
pending on the excitation sequence (col (x, u)). There al-
ways exists at least one worst-case (w.c.) sequence that max-
imises || col(&x41, hyy1)| for each iteration k. However,
finding such an excitation sequence is not straightforward.
Often this can only be approximated by a random search.
Only additional restrictions on the excitation vectors, as ex-
plained in the scenario of Sec. 4 further ahead, may make a
full search feasible that ensures a conclusive answer regard-
ing convergence or divergence. Such restricting conditions in
turn, may cause an algorithm that is covered by Case 3 to be-
have stable [1]. At this point, we emphasise that convergence
means boundedness of the PEVs, not necessarily a zero limit.

3.2. Presence of noise with finite energy

Now, we will justify the assumption made at the beginning of
Sec. 3.1 by considering the presence of noise. To do so, we
start with the noisy version of (5),

ol
hy 1

If we take the Euclidean norm and apply the triangular in-
equality, we obtain with the maximum singular value (SV) of
the matrix By, denoted by omax (%),

|

hyiq
If Case 1 (or 4) in Theorem 1 is satisfied, oax (k) = 1, and
we find by substituting iteratively from k£ = 0 up to infinity

=< D 2 e

where the sum on the right hand side exists and is bounded,
as long as the noise sequences (04(k)) and (0 (k)) have finite
energy. Then, also the norm of the combined PEV is bounded.

g (K)

{gk} 3 {(Vgg(k)vg(k) +1/gh(k)vh(k))xk}
Flhy (Ung (K )vg (k) + vin (K)o (k) ug |

o, (k)

< omus(t) | ]

-+

[t

4. COUPLING WITH STRONG SYMMETRIES

In order to demonstrate the tighter nature of Theorem 1 in
contrast to the bound in (4), we consider the specific scenario

Vgg(k):th(k)ZM Vgh(k):th(k):/U/y (9)
[x£)13 = [lugl3 = M. (10)

Note that (10) is not as restricting as it may appear, since it is
even exactly fulfilled in many communication systems using
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Fig. 2. Results of the convergence analysis for the scenario given by
(9) and (10). The four areas correspond to the Cases 1-4 in Theo-
rem 1. Contracting behaviour is only ensured for A&B (green). For
the (red) areas with A&C, the parameter error will never decrease.
Case 4 from Theorem 1 coincides with the two dash-dotted lines.

constant modulus transmission. Applying Theorem 1 with

a(k) =~y(k) = p [2 — pM(1+v%)],
B(k) = 2puv(1 — pM).

allows to identify the four areas in the plane spanned by M
and v that correspond to Cases 1-4 in Theorem 1. Fig. 2
visualises the result, which we summarise in the following
corollary (the proof is skipped for reasons of brevity).

Corollary 1 Consider the homogeneous recursion (5), or
equivalently, (3) with vy(k) = vy (k) = 0, and the coupling
scenario specified by (9) and (10). Then, the largest SV of
the matrix By, is ensured to be less or equal to one (entailing
non-diverging behaviour) iff

—-1<v <, and 0 < uM

< —. 11
- 14y (b

Clearly, the stability bound becomes larger with looser cou-
pling. If we would have consulted (4) instead of Theorem 1,
we would have found M < 1, for all |v| < 1; for any other
v no decision would have been possible. This well demon-
strates that Theorem 1 leads to tighter bounds than those pre-
sented in [3]. Moreover, for |v| > 1, the latter cannot be
applied at all, while Theorem 1 and Corollary 1 still hold.

As short excursus, consider the slight modification of (9) to

Vhn(k) = vgn(k) = pv, (12

which changes the situation drastically. Then, (4) is found
to be violated, which means that based on [3], no conclusive
statement regarding [o-stability can be obtained. In contrast,
(for 4 # 0 and |v| # 1) Theorem 1 reveals that only Case 3
can occur, which obviously provides much more insight. Be-
fore we end our excursus and return to (9), we mention that
(12) is obtained if the update errors of both branches in Fig. 1
are identical, i.e., £ (k) = &, (k). This is exactly the situation
that occurs if two LMS algorithms are cascaded [3, 15].

Vgg(k) = vng(k) = p,
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(a) Results obtained for simple random QPSK input sequences. All
cases except ¥ = 1 show converging behaviour.
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(b) Results for the simulations which include a w.c. search. For all
cases divergence is revealed.

Fig. 3. Numeric evaluation of the coupling with strong symmetries.
The step-size p is chosen such that it exceeds the bound in (11) by
5 %. The combined parameter mismatch m(gs, flk) (cf. (13)) is es-
timated by averaging over 200 simulation runs.

In the sequel of this section, we validate Corollary 1 by
two Monte-Carlo simulations. Both of them are based on
Fig. 1 where all filters have a transversal structure of length
My = My, = M = 10. At each iteration k, the two scalar
inputs (k) and u(k) in (1) are taken from a quadrature phase
shift keying (QPSK) alphabet with unit modulus. This en-
sures that (10) is satisfied and allows us to introduce the nor-
malised step-size M. The noise samples vy (k) and vy, (k)
are drawn from N¢(0,107%). All results are obtained by av-
eraging over 200 simulation runs, where for each run, the el-
ements of the reference vectors g and h are randomly gen-
erated from N (0, 17). For each of the considered coupling
values v = {0.25,0.5,0.75, 1}, the step-size is chosen 5 %
above the bound given in (11).

In the first experiment, x(k) and w(k) are randomly drawn
from the QPSK alphabet. Fig. 3(a) shows an estimate of the
combined parameter mismatch, i.e.,

(@, By) = E{ g/l + b}
E{]|ol* + [ho[[?}

which converges for all cases except for v = 1. The sec-

13)
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ond experiment only differs in the generation of the excitation
samples, as they are chosen such that m(g, flk) is maximised
during each iteration. This is achieved by a complete search
over all 16 possible combined excitation vectors. There are
only 16 possibilities, as except from z(k) and u(k), the ele-
ments in (1) are all fixed from previous iterations, and due to
the QPSK alphabet the pair {z(k), u(k)} can only assume one
out of 2* = 16 combinations. Fig. 3(b) depicts the averaged
results obtained with the w.c. input sequences. Clearly, the
w.c. search reveals divergence for all considered cases, even
for those which lead to convergence in the first experiment.
We repeated the above experiments with the step-size p
chosen 5 % below the bound given in (11). Due to space re-
strictions, the results are not included. However, as expected
from Corollary 1, under no circumstance, divergence occurs.
Of course, the results obtained with w.c. excitation lead to
slower convergence and degraded steady-state behaviour.

5. CONCLUSION

The here presented stability analysis is based on the norm of
the combined PEV. As this norm fulfils the requirements of
a Lyapunov function, Theorem 1 and Corollary 1 establish
conditions for Lyapunov stability of the considered coupled
structure. Although the energy of the update errors is not fur-
ther investigated, it ensures robustness of the parameter error
mismatch with respect to additive noise of finite energy. Sim-
ilar to the results in [3], for the here presented stability analy-
sis, persistence of excitation has an impact to the convergence
of the PEVs, as it also restricts the space of w.c. excitation se-
quences. However, these effects are beyond the scope of this
paper and will be treated elsewhere.

APPENDIX: SKETCHED PROOF OF THEOREM 1

For the combined PEV col(gy, flk) at iteration k, in the noise-
less case, we find from (5)

~ k—1 ~
8k| _ go
[Bk] = mf:[O B, [ho] : (14)
C

Clearly, with 0c max (k) denoting the maximum SV of Cy,
|| COl(gk7 hk)” < || COl(go, ho)“, if 0'C7max(k) < 1. The SV
0, max (k) is bounded from above by

k—1
UC,III&X(k) S H Urrlax(m)- (15)
m=0

Thus, omax(m) < 1forallm € {0,...,k — 1} is sufficient
for ¢ max (k) < 1.

Contrarily, for opax(k) > (1 + §) with § > 0, the con-
tained equality in (15) entails that oc max (k) keeps growing
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with increasing k. Hence, ||col(gx, hy)|| increases as well.
Whether then, in the w.c., ||col(&, hy,)|| remains bounded or
tends towards infinity depends on the domain of col (xj, ug).
The above considerations establish the basis for Theorem 1.
Accordingly, we will now consider the SVs o;(k) of By in
more detail. In the sequel, we omit indices or arguments re-
ferring to the iteration index k. Based on (5), the squared SVs
o; are identical to the eigenvalues of the matrix
H ax*x!  fBx*u’
B'B=1- |:5U.*XT 'yu*uT] ’

where we used (6)—(8). We skip the derivation and just sum-
marise that B has M, + M}, — 2 (mutually orthogonal right-
sided) singular vectors (SVCs) v;, without loss of general-
ity (WOLOG) i € {3, ..., M, + M}, that coincide with the
unit SV. For the remaining two SVs, WOLOG, we assume
01 > o9 and obtain their squares as

1
02s = 1= S (x| +ul?)

1
+ 5V (@lx[? = y[[ul?)? + 452 [x[* Ju]]* (16)

1
= 1= S(alxl* +y[ul*)

45 — ay) [P ]
1+4/1+ . 17
. ( \/ (@l + ATl ) (4

Additionally, let S1 2 = span{vi,va} be the hyperplane
spanned by the corresponding right-sided SVCs.

In order to proof the four cases in Theorem 1, first recog-
nise that Cases 1 and 2 are equivalent to o7y < 1 and 09 > 1,
respectively. Case 3 covers the situation o3 > 1 > o3, and
Case 4 is obtained when o7 = 09 = 1. Moreover, note that
Theorem 1 ensures ||x|| > 0 and |ju|| > 0.

Case 1,i.e., 1 > 01 > 09 It can directly be seen from (16)
that for Case 1, we have to require

Vialx[? =~llul?)? + 452 x[*[[u® < alx]* +v]ul?,

which it satisfied iff Conditions A and B in Theorem 1 are

fulfilled. For any vector col(g,h) / i, the norm of the

combined PEV decreases, otherwise, it remains unchanged.
Case 2, i.e., 01 > 0o > 1: Similar to Case 1, we see

from (16) that Case 2 requires

V(allx]? = yllul2)2+45x][2|ul? < — (x| >+ u]?),

which is true iff Conditions A and C are fulfilled. Then,
the norm of the combined PEV increases for any vector
col(g,h) L S; o, otherwise it remains constant.

Case 3, i.e., 01 > 1 > oy: If Condition A is violated, the
argument of the square-root in (17) is larger than one. This
in turn entails that the bracket expression in the second line
of (17) is larger than two for the positive square-root, and less
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than zero for the negative square-root. Consequently, as long
as af[x||? +~|[ul|* # 0, 01 > 1 and o2 < 1. Thus, choosing
col(g,h) || v leads to an increasing, col(g,h) || vo to a
decreasing norm of the combined PEV.

Case 4, i.e., 01 = 02 = 1: Since o|x||? + v[[ul|?> =0, it
follows from (17) that oy = 092 = 1. Hence, in (14), C =1
which entails that the combined PEV remains constant.
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