
A NOVEL LINE SEARCH METHOD FOR NONSMOOTH OPTIMIZATION PROBLEMS

Yang Yang and Marius Pesavento

Communication Systems Group, Darmstadt University of Technology, Darmstadt, Germany.

Emails: {yang, pesavento}@nt.tu-darmstadt.de

ABSTRACT

In this paper, we propose a novel exact/successive line search

method for stepsize calculation in iterative algorithms for

nonsmooth optimization problems. The proposed approach

is to perform line search over a properly constructed differ-

entiable function based on the original nonsmooth objective

function, and it outperforms state-of-the-art techniques from

the perspective of convergence speed, computational com-

plexity and signaling burden. When applied to LASSO, the

proposed exact line search is shown, either analytically or nu-

merically, to exhibit several desirable advantages, namely: it

is implementable in closed-form, converges fast and is robust

with respect to the choice of problem parameters.

Index Terms— Descent Direction Method, Distributed

and Parallel Algorithms, LASSO, Line Search, Nondifferen-

tiable Optimization, Successive Convex Approximation

1. INTRODUCTION

In this paper, we consider iterative algorithms that solve the

following optimization problem:

minimize
x=(xk)Kk=1

U(x) , f(x1, . . . ,xK) +
∑K

k=1gk(xk),

subject to xk ∈ Xk, k = 1, . . . ,K, (1)

We make the following assumptions on problem (1):

(A1) The function U(x) is coercive (i.e., U(x) → +∞ if

‖x‖ → +∞), f(x) is differentiable, and gk(xk) is convex

but not necessarily smooth.

(A2) The gradient ∇f(x) is Lipschitz continuous with a con-

stant L (i.e., ‖∇f(x)−∇f(y)‖ ≤ L ‖x− y‖, ∀x,y ∈ X).

(A3) The set Xk is nonempty, closed and convex.

Note that the coercivity of U(x) implies that every lower level

set of U(x) is bounded.

We do not assume that f(x) is convex, so problem (1) is

in general nonconvex. Since the constraint set in (1) is uncou-

pled among different variables xk’s and changing one vari-

able does not affect the feasibility of other variables, problem

(1) is suitable for distributed computation [1, 2]. The block

coordinate descent (BCD) method [1, Sec. 2.7] is such an ex-

ample: in each iteration, only one variable is updated by the

solution that minimizes f(x) with respect to (w.r.t.) that vari-

able while the remaining variables are fixed, and the variables

This work is supported by the Seventh Framework Programme for Re-

search of the European Commission under grant number ADEL 619647.

are updated sequentially. This method has been applied in

many practical problems, see [3] and the references therein.

On the other hand, BCD may suffer from slow conver-

gence due to the sequential update, especially when the num-

ber of variables is large. Parallel update seems more desir-

able, but they converge under rather restrictive conditions, for

example, under the diagonal dominance condition on the ob-

jective function f(x) [2] or the condition that the stepsize is

sufficiently small [1]. A recent progress in parallel algorithm-

s has been made in [4] and it was shown that the stationary

points of (1) can be found by solving a sequence of succes-

sively refined approximate problems. Note that this algorithm

is essentially an iterative descent direction method and con-

vergence is established if, among other conditions, the ap-

proximate function and stepsizes are properly selected.

Despite its novelty, the parallel algorithm proposed in [4]

suffers from a limitation, namely, decreasing stepsizes must

be used. On the one hand, a slowly decaying stepsize is

preferable to make notable progress and to achieve satisfac-

tory convergence speed; on the other hand, theoretical con-

vergence is guaranteed only when the stepsize decays fast e-

nough. In practice, it is a difficult task on its own to find a

decay rate that gives a good trade-off between convergence

guarantee and convergence speed and current practices main-

ly rely on heuristics which are however sensitive to the prob-

lem parameters. It is possible to employ a constant stepsize

and successive line search to determine the stepsize, but the

former suffers from a slow convergence while the complex-

ity to implement the latter is usually very high because the

objective function in (1) is nonsmooth.

The contribution of this paper consists in the developmen-

t of a novel exact/successive line search procedure for nons-

mooth problems. In particular, the proposed line search is car-

ried out over a properly constructed differentiable function.

Thus it is much easier to implement than state-of-the-art line

search methods that operate on the nonsmooth objective func-

tion in (1) directly. If f(x) exhibits a specific structure, such

as in convex quadratic functions, it is further possible to per-

form the exact/successive line search in closed-form with an

affordable level of signaling exchange among different pro-

cessors when implemented in a distributed manner. Besides,

the proposed line search method typically yields faster con-

vergence than decreasing stepsizes and it is robust to parame-

ter changes. The advantages of the proposed algorithm will be

demonstrated in the example of the popular LASSO problem.

23rd European Signal Processing Conference (EUSIPCO)

978-0-9928626-3-3/15/$31.00 ©2015 IEEE 1756

2. STATE-OF-THE-ART SUCCESSIVE CONVEX

APPROXIMATION FRAMEWORK

To begin with, we introduce the iterative algorithm based on

the successive convex approximation framework proposed in

[4]. In particular, problem (1) is solved as a sequence of suc-

cessively refined approximate problems, each of which is pre-

sumably much easier to solve than the original problem (1).

At iteration t, given the point x = xt generated in the previ-

ous iteration, the approximate problem is

minimize
(xk∈Xk)

K
k=1

∑K
k=1(f̃k(xk;x

t) + gk(xk)), (2)

where
∑K

k=1 f̃k(xk;x
t) is the approximate function of f(x)

aroundx = xt and it satisfies several technical conditions [4]:

(B1) The function f̃k(xk;y) is strongly convex in xk ∈ Xk

with some constant c > 0 for any given y ∈ X ;

(B2) The function f̃k(xk;y) is continuously differentiable in

xk ∈ Xk for a fixed y and Lipschitz continuous in y ∈ X for

a fixed xk, and ∇xk
f̃k(xk;x) = ∇xk

f(x);
If f(x1, . . . ,xK) is convex in xk for all k (but not neces-

sarily jointly convex), an approximate function satisfying the

above Assumptions (B1)-(B2) is given by:

f̃k(xk;x
t) = f(xk,x

t
−k) +

c
2

∥

∥xk − xt
k

∥

∥

2
, (3)

where x−k , (xj)j 6=k and c is a positive constant.

Since (2) is uncoupled among different variables xk in

both the objective function and the constraint set, it can be

solved in parallel. Let us define the operator Bkx as

Bkx
t , argmin

xk∈Xk

{

f̃k(xk;x
t) + gk(xk)

}

. (4)

It was shown in [4, Prop. 8(c)] that Bxt − xt where Bx =
(Bkx)

K
k=1 is a descent direction of (1), along which U(x) can

be decreased compared with U(xt). The next point xt+1 is

thus defined as:

xt+1 = xt + γt(Bxt − xt), (5)

where γt ∈ (0, 1] is an appropriate stepsize that can be deter-

mined by the following standard rules.

Decreasing stepsize [1, 4, 5]: The sequence {γt} decreases

but it does not decrease too quickly in the following sense:

γt → 0,
∑∞

t=1γ
t = ∞. (6)

Examples satisfying (6) include

γt+1 = γt(1− dγt), (7)

where d ∈ (0, 1) is the so-called decreasing rate and it con-

trols how fast the stepsize γt decreases.

Exact line search [1, 5, 6]: The stepsize γt decreases the ob-

jective function U(xt + γ(Bxt − xt)) to the largest extent:

γt,argmin
0≤γ≤1

{

f(xt + γ(Bxt − xt))

+
∑K

k=1gk(x
t
k + γ(Bkx

t − xt
k))

}

. (8)

Successive line search [4, 5]: Given constants α, β ∈ (0, 1),
the stepsize γt is set to be γt = βmt , where mt is the smallest

nonnegative integer m satisfying the following inequality:

f(xt + βm(Bxt − xt)) +
∑K

k=1gk(x
t
k + βm(Bkx

t − xt
k))

≤ f(xt) +
∑K

k=1gk(x
t
k)− αβmc

∥

∥Bxt − xt
∥

∥

2
. (9)

It was shown in [4, Th. 1] that any limit point of the se-

quence {xt} generated by (5) with any of the stepsize rules

(6)-(9) is a stationary point of (1). However, despite this at-

tractive convergence guarantee, the stepsize rules (7)-(9) suf-

fer from several practical limitations. Firstly, it is difficult

to find a decreasing rate d in (7) that gives a good trade-off

between convergence guarantee and convergence speed. Sec-

ondly, the exact line search (8) involves a nonsmooth opti-

mization problem which is usually computationally expensive

to solve. Thirdly, the successive line search (9) involves re-

peated evaluation of both the differentiable function f(x) and

the nonsmooth functions gk(xk) for k = 1, . . . ,K , which

may consume considerable computational resources and in-

cur a lot of signaling exchange among different processors

when implemented in a distributed manner.

3. THE PROPOSED LINE SEARCH METHOD

In this section, we propose a novel exact/successive line

search method that overcomes the shortcomings of state-of-

the-art techniques. Firstly note that the main difficulty in (8)

is the nonsmooth function gk(xk) which makes the objective

function in (8) nonsmooth. As gk(xk) is convex, Jensen’s

inequality implies that for any γ ∈ [0, 1]:

gk(x
t
k + γ(Bkx

t − xt
k)) ≤ (1− γ)gk(x

t
k) + γgk(Bkx

t)

= γ(gk(Bkx
t)− gk(x

t
k)) + gk(x

t
k). (10)

The function in (10) is a linear function of γ and it is an upper

bound of gk(x
t
k+γ(Bkx

t−xt
k)) which is exact at either γ = 0

or γ = 1. Then it readily follows that for any γ ∈ [0, 1]:

U(xt + γ(Bxt − xt))− U(xt)

= f(xt + γ(Bxt − xt))− f(xt)

+
∑K

k=1(gk(x
t
k + γ(Bkx

t − xt
k))− gk(x

t
k))

≤ f(xt + γ(Bxt − xt))− f(xt)

+ γ(
∑K

k=1gk(Bkx
t)− gk(x

t
k)) (11a)

≤ γ(Bxt − xt)T∇f(xt) + L
2 γ

2
∥

∥Bxt − xt
∥

∥

2

+ γ
∑K

k=1(gk(Bkx
t)− gk(x

t
k)) (11b)

≤ − γ(c− L
2 γ)

∥

∥Bxt − xt
∥

∥

2
, (11c)

where (11a), (11b), and (11c) comes from (10), the descent

lemma [1, Prop. A.24] while L is given in Assumption (A2),

and [4, Prop. 8(c)], respectively. For any γ that is sufficiently

small, the term in (11c) is negative, which implies that the

term in (11a) is negative and U(xt + γ(Bxt − xt)) < U(xt).

23rd European Signal Processing Conference (EUSIPCO)

1757

Proposed simplied exact line search: Instead of directly

minimizing U(xt + γ(Bxt − xt)) − U(xt) (or equivalently

U(xt+γ(Bxt−xt))) over γ as in (8), we propose to minimize

its (tight) upper bound function in (11a):

γt = argmin
0≤γ≤1

{

f(xt + γ(Bxt − xt))

+γ
∑K

k=1(gk(Bkx
t)− gk(x

t
k))

}

, (12)

where the constant term f(xt) is discarded without loss of

generality. Problem (12) has a differentiable objective func-

tion with a scalar variable and a bound constraint, so the vast

variety of numerical algorithms for differentiable problems in

literature can readily be applied [1].

To simplify the discussion, we define the objective func-

tion in (12) as ht(γ):

ht(γ) , f(xt+γ(Bxt−xt))+γ
∑K

k=1(gk(Bkx
t)−gk(x

t
k)).
(13)

If f(x) is convex in x and γ⋆ nulls the gradient of ht(γ):
∇γh

t(γ⋆) = 0, then γt in (12) is simply the projection of γ⋆

onto the interval [0, 1]:

γt =











1, if ∇γh
t(γ)|

γ=1 ≤ 0,

0, if ∇γh
t(γ)|

γ=0 ≥ 0,

γ⋆, otherwise.

It is sometimes possible to compute γ⋆ analytically, e.g., f(x)
is convex quadratic in x. If not, γ⋆ can be found efficient-

ly by bisection method: since ht(γ) is convex in γ, it fol-

lows that ∇γh
t(γ) < 0 if γ < γ⋆ and ∇γh

t(γ) > 0 if

γ > γ⋆. Then given an interval [γlow, γup] containing γ⋆ (the

initial value of γlow and γup is 0 and 1, respectively), we set

γmid = (γlow + γup)/2 and refine γlow and γup as follows:

γlow = γmid if ∇γh
t(γmid) > 0 or γup = γmid otherwise. This

procedure is repeated for a finite number of times until the

gap γup − γlow is smaller than a prescribed precision.

Proposed simplified successive line search: If no struc-

ture in f(x) (e.g., convexity) can be exploited to efficiently

compute γt according to the exact line search (12), the suc-

cessive line search can instead be employed. In the proposed

simplified successive line search, instead of directly search

over U(xt+γ(Bxt−xt))−U(x) as in (9), we set γt = βmt ,

where mt is the smallest nonnegative integer m for which the

following inequality is satisfied:

f(xt + βm(Bxt − xt)) + βm(
∑K

k=1gk(Bkx
t)− gk(x

t
k))

≤f(xt)− αβmc
∥

∥Bxt − xt
∥

∥

2
. (14)

In other words, the proposed successive line search is carried

out over ht(λ), i.e., the tight upper bound of U(xt+γ(Bxt−
xt))−U(xt). Such a constant mt always exists and we derive

its upper bound: (11c) indicates that (14) is satisfied if

−βm(c− L
2 β

m) ‖Bxt − xt‖
2
≤ −αβmc ‖Bxt − xt‖

2

⇐⇒ 0 ≤ βm ≤ 2(1−α)c
L

⇐⇒ m ≥ logβ(2(1− α)c/L),

so mt ≤
⌈

logβ(2(1 − α)c/L)
⌉

, where ⌈a⌉ is the smallest

integer that is larger than a.

The new successive line search (14) involves the evalu-

ation of the differentiable function f(x) only and it outper-

forms, from the perspective of both computational complex-

ity and signaling exchange, state-of-the-art techniques (9) in

which the objective function f(x) + g(x) must be repeated-

ly evaluated (for different values of m) and compared with a

certain benchmark until mt is found.

Theorem 1. Any limit point of the sequence {xt} generated

by (5) with the simplified exact line search (12) or the sim-

plifed successive line search (14) is a stationary point of (1).

Sketch of proof: The idea of the proof is to show that the

update (5) with either (12) or (14) yields a larger decrease in

the objective functionU(x) in each iteration than the decreas-

ing stepsize (6) does. Then the convergence readily follows

from the convergence of (5) under the decreasing stepsize (6)

which was proved in [4, Th. 1]. Due to space limitations we

omit the detailed steps and refer to [7]. �

Theorem 1 establishes that there is no loss of convergence

if the line search is carried out over ht(γ), a differentiable

function constructed based on the fundamental property of

convex functions. Thus the proposed line search methods (12)

and (14) generally yields faster convergence than state-of-the-

art decreasing stepsizes (6) and are easier to implement than

state-of-the-art line search techniques (8) and (9), as will be

illustrated in the next section for the example of the LASSO

problem in sparse signal estimation.

4. EXAMPLE APPLICATION: LASSO

In this section, we specialize the proposed algorithm to solve

the LASSO problem, an important and widely studied prob-

lem in sparse signal estimation [4, 8–12]:

minimize U(x) , 1
2 ‖Ax− b‖

2
2 + µ ‖x‖1 , (15)

where A ∈ R
N×K (with N ≪ K), b ∈ R

K×1 and µ > 0 are

given parameters. Problem (15) is convex, but the objective

function is nonsmooth and cannot be minimized in closed-

form. We thus apply the proposed iterative algorithm.

To begin with, scalar decomposition of x is adopted, i.e.,

x = (xk)
K
k=1. Define f(x) , 1

2 ‖Ax− b‖
2
2 and gk(xk) ,

µ|xk|. The approximate problem for xk is (cf. (3))

Bkx
t = argminxk

{

f(xk,x
t
−k) +

c
2 (xk − xt

k)
2 + gk(xk)

}

= (dk + c)−1Sµ(rk(x
t) + c xt

k), k = 1, . . . ,K, (16)

where xt
−k , (xt

j)j 6=k , Sa(b) , (b − a)+ − (−b − a)+

with (a)+ , max(a, 0) is the well-known soft-thresholding

operator [6, 9], d , diag(ATA) and

r(x) , d ◦ x−AT (Ax− b) (17)

23rd European Signal Processing Conference (EUSIPCO)

1758

with a ◦ b denoting the Hadamard product between a and b.

Then employing our proposed exact line search (12) yields

γt = argmin
0≤γ≤1

{

1
2 ‖A(xt + γ(Bxt − xt))− b‖

2
2

+γµ
(
∥

∥Bxt
∥

∥

1
−
∥

∥xt
∥

∥

1

)

}

(18)

=

[

−
(Ax

t−b)T (A(Bxt−x
t))+µ(

∥

∥

Bx
t
∥

∥

1
−

∥

∥

x
t
∥

∥

1
)

(A(Bxt−xt))T (A(Bxt−xt))

]1

0

. (19)

The optimization problem in (18) is convex quadratic with a

closed-form solution (19), where [x]ba , max(min(x, b), a).
Therefore, with (16) and (19), all elements of x are updated in

parallel and in closed-form. In contrast with the decreasing

stepsize scheme used in [4], the stepsize based on the exact

line search (16) and (19) yields notable progress in all itera-

tions and the convergence speed is thus greatly enhanced. We

name the proposed update (16) and (19) as Soft-Thresholding

with simplified Exact Line search Algorithm (STELA).

Similarly, to illustrate the advantage of the proposed suc-

cessive line search (14), we remark that mt can also be cal-

culated in closed-form. Therefore, if the line search has to be

performed distributedly, the signaling exchange only needs

to be carried out once among different processors, which is

a much less overhead than in state-of-the-art techniques (9).

We omit the details due to space limitations and refer to [7].

Computational complexity: The computational over-

head associated with the proposed exact line search (19) can

significantly be reduced if it is carefully implemented as out-

lined in the following. The most complex operation in (19) is

the matrix-vector multiplication, namely, Axt − b in the nu-

merator and A(Bxt − xt) in the denominator. On one hand,

Axt − b is already available from the computation of r(xt)
in (16)-(17). On the other hand, the product A(Bxt − xt) is

also required to compute Axt+1−b in the following iteration

of the update (17) as it can alternatively be computed as:

Axt+1 − b = (Axt − b) + γtA(Bxt − xt). (20)

As a result, (19) does not incur additional matrix-vector mul-

tiplications, but only affordable vector-vector multiplications.

Signaling exchange: When A is too large to be stored

and processed by a centralized architecture, a parallel hard-

ware architecture can be employed. Assume there are P pro-

cessors and partition A and x as A = [A1 A2 . . . AP] and

x = (xp)
P
p=1, where Ap ∈ R

N×Kp (
∑P

p=1 Kp = K) and

xp ∈ R
Kp×1 are stored and processed locally in processor p.

We remark that the level of signaling exchange to calcu-

late (16) and (19) is as same as [4], where the update direc-

tion is found by (16) and the predetermined decreasing step-

size (7) is used. In other words, the line search (19) does

not incur any additional signaling: in (19), since Axt − b is

already available when calculating r(xt), different processors

only need to exchangeAp(Bpx
t−xt

p) (to form A(Bxt−xt))

and ‖Bpx
t‖1 −

∥

∥xt
p

∥

∥

1
. On the one hand, Ap(Bpx

t −xt
p) has

to be exchanged anyway to compute Axt+1 − b in (20) so

that Bxt+1 can be computed according to (16) in the next it-

eration. On the other hand, ‖Bpx
t‖1 −

∥

∥xt
p

∥

∥ is a scalar that

50 100 150 200 250 300 350 400 450 500

10
−6

10
−4

10
−2

10
0

number of iterations

e
rr

o
r

e
(x

t)

STELA: parallel update with simplified exact line search (proposed)

FLEXA: parallel update with decreasing stepsize (state−of−the−art)

decreasing rate: 10
−4

decreasing rate: 10
−1

decreasing rate: 10
−3

decreasing rate: 10
−2

Fig. 1. Convergence of STELA (proposed) and FLEXA (state-

of-the-art) for LASSO.

has to be exchanged among different processors, but this is

also required (in terms of
∥

∥xt
p + γt(Bxt − xt

p)
∥

∥

1
) in [4] to

calculate U(xt) in each iteration, see [4, Sec. VI-A].

Simulations: We first compare in Fig. 1 the proposed al-

gorithm STELA with FLEXA [4] in terms of error defined as

e(xt) =
∥

∥∇f(xt) − [∇f(xt)− xt]
µ1

−µ1

∥

∥

1
. Note that x⋆ is

a solution of (15) if and only if e(x⋆) = 0. In STELA, we

set c = 0 in (16); this does not violate the convergence result

because dk =
∑N

n=1 A
2
nk > 0 for all k. For FLEXA, it is im-

plemented as same as [4] except that all elements are updated

in parallel and the selective update scheme is not employed,

because it cannot overcome the bottleneck of the decreasing

stepsize. We also remark that the stepsize rule for FLEXA is

γt+1 = γt(1−min(1, 10−4/e(xt))dγt) with γ0 = 0.9 while

d is the decreasing rate. The code and data generating Fig. 1

(and later Fig. 2) is available online [13].

Note that the error e(xt) plotted in Fig. 1 needs not mono-

tonically decrease (but U(xt) does) because both STELA and

FLEXA are descent direction methods. For FLEXA, when the

decreasing rate is low (d = 10−4), no improvement is ob-

served after 100 iterations. Similar behavior is also observed

for d = 10−3, until the stepsize becomes small enough. When

the stepsize is quickly decreasing (d = 10−1), although im-

provement is made in all iterations, the asymptotic conver-

gence speed is slow because the stepsize is too small to make

notable improvement. For this example, d = 10−2 works

well, but the value of a good decreasing rate is parameters de-

pendent (e.g., A, b and µ) and no general rule works well for

all choices of parameters. By comparison, STELA is fast to

converge and robust w.r.t. the choice of parameters.

We also compare in Fig. 2 the proposed algorithm STELA

with FISTA [9], ADMM [10], GreedyBCD [12] and SpaRSA

[11]. We simulated GreedyBCD out of [12] because it is the

one that has guaranteed convergence. The dimension of A is

2000× 4000 and 5000× 10000 (the left and right column of

Fig. 2, respectively). The density of xtrue is 0.1, 0.2 and 0.4

(the upper, middle and lower row of Fig. 2, respectively). The

23rd European Signal Processing Conference (EUSIPCO)

1759

0 2 4 6 8 10
10

−6

10
1

e
rr

o
r

e
(x

t)

0 2 4 6 8 10
10

−6

10
1

e
rr

o
r

e
(x

t)

0 2 4 6 8 10
10

−6

10
1

time (sec)

e
rr

o
r

e
(x

t)

0 20 40 60 80 100
10

−6

10
1

0 20 40 60 80 100
10

−6

10
1

0 20 40 60 80 100
10

−6

10
1

time (sec)

STELA (proposed)

ADMM

FISTA

GreedyBCD

SpaRSA

Fig. 2. Time versus error of different algorithms for LASSO.

In the left and right column, the dimension of A is 2000 ×
4000 and 5000 × 10000, respectively. In the higher, middle

and lower column, the density of xtrue is 0.1, 0.2 and 0.4.

hardware/software environment is specified in [7].

The comparison is in terms of CPU time either a giv-

en error bound e(xt) ≤ 10−6 is reached or the maximum

number of iterations, namely, 2000, is reached. The running

time consists of both the initialization stage (represented by

a flat curve) and the formal stage. For example, in STELA,

d(ATA) must be computed in the initialization stage.

It is easy to see from Fig. 2 that the proposed algorithm

STELA converges faster than other algorithms. Some more

comments follow. i) The proposed algorithm STELA is not

sensitive to the density of the true signal xtrue. When the

density is increased from 0.1 (left column) to 0.2 (middle

column) and then to 0.4 (right column), the CPU time is in-

creased negligibly. ii) The proposed algorithm STELA is rel-

atively scalable w.r.t. the problem dimension. When the di-

mension of A is increased, the CPU time is only marginally

increased. iii) The initilization stage of ADMM is time con-

suming because of some expensive matrix operations, e.g.,

AAT ,
(

I+ 1
c
AAT

)−1
and AT

(

I+ 1
c
AAT

)−1
A (c is a

given positive constant). More details can be found in [10,

Sec. 6.4]. Furthermore, the CPU time of initialization stage

of ADMM is increased dramatically when the dimension of A

is increased from 2000× 4000 to 5000× 10000. iv) SpaRSA

works better when the density of xtrue is smaller, e.g., 0.1,

than when it is large, e.g., 0.2 and 0.4. v) The asymptotic

convergence speed of GreedyBCD is slow, because only one

variable is updated in each iteration.

5. CONCLUDING REMARKS

In this paper, we have proposed a novel exact/successive

line search method for nonsmooth optimization problems.

The proposed approach is to perform line search over a dif-

ferentiable upper bound function of the original nonsmooth

function, and it outperforms state-of-the-art from the perspec-

tive of both computational complexity and signaling burden.

When applied to the LASSO problem, the proposed simpli-

fied line search is easily implementable due to the existence of

closed-form expression, converges faster than state-of-the-art

algorithms and robust w.r.t. the choice of parameters.

REFERENCES

[1] D. P. Bertsekas, Nonlinear programming. Athena Scientific,

1999.

[2] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and distributed

computation: Numerical methods. Prentice Hall, 1989.

[3] S.-J. Kim and G. B. Giannakis, “Optimal resource allocation

for MIMO Ad Hoc cognitive radio networks,” IEEE

Transactions on Information Theory, vol. 57, no. 5, pp.

3117–3131, May 2011.

[4] F. Facchinei, G. Scutari, and S. Sagratella, “Parallel Selective

Algorithms for Nonconvex Big Data Optimization,” IEEE

Transactions on Signal Processing, vol. 63, no. 7, pp.

1874–1889, Nov. 2015.

[5] M. Patriksson, “Cost approximation: A unified framework of

descent algorithms for nonlinear programs,” SIAM Journal on

Optimization, vol. 8, no. 2, pp. 561–582, May 1998.

[6] M. Elad, “Why simple shrinkage is still relevant for redundant

representations?” IEEE Transactions on Information Theory,

vol. 52, no. 12, pp. 5559–5569, 2006.

[7] Y. Yang and M. Pesavento, “A novel iterative convex

approximation method,” Jun. 2015, submitted to IEEE

Transactions on Signal Processing. [Online]. Available:

http://arxiv.org/abs/1506.04972

[8] R. Tibshirani, “Regression shrinkage and selection via the las-

so,” Journal of the Royal Statistical Society: Series B (Statis-

tical Methodology), vol. 58, no. 1, pp. 267–288, Jun. 1996.

[9] A. Beck and M. Teboulle, “A Fast Iterative Shrinkage-

Thresholding Algorithm for Linear Inverse Problems,” SIAM

Journal on Imaging Sciences, vol. 2, no. 1, pp. 183–202, Jan.

2009.

[10] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein,

“Distributed Optimization and Statistical Learning via the

Alternating Direction Method of Multipliers,” Foundations

and Trends in Machine Learning, 2010.

[11] S. Wright, R. Nowak, and M. Figueiredo, “Sparse Recon-

struction by Separable Approximation,” IEEE Transactions

on Signal Processing, vol. 57, no. 7, pp. 2479–2493, Jul.

2009.

[12] Z. Peng, M. Yan, and W. Yin, “Parallel and distributed sparse

optimization,” 2013 Asilomar Conference on Signals, Systems

and Computers, Nov. 2013.

[13] Y. Yang, http://www.nts.tu-darmstadt.de/home nts/staff nts/

mitarbeiterdetails 32448.en.jsp.

23rd European Signal Processing Conference (EUSIPCO)

1760

