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ABSTRACT

This paper introduces a novel technique for reconstructing

the phase of modified spectrograms of audio signals. From

the analysis of mixtures of sinusoids we obtain relation-

ships between phases of successive time frames in the Time-

Frequency (TF) domain. To obtain similar relationships over

frequencies, in particular within onset frames, we study an

impulse model. Instantaneous frequencies and attack times

are estimated locally to encompass the class of non-stationary

signals such as vibratos. These techniques ensure both the

vertical coherence of partials (over frequencies) and the hor-

izontal coherence (over time). The method is tested on a

variety of data and demonstrates better performance than tra-

ditional consistency-based approaches. We also introduce an

audio restoration framework and observe that our technique

outperforms traditional methods.

Index Terms— Phase reconstruction, sinusoidal model-

ing, linear unwrapping, phase consistency, audio restoration.

1. INTRODUCTION

A variety of music signal processing techniques act in the

TF domain, exploiting the particular structure of music sig-

nals. For instance, the family of techniques based on Non-

negative Matrix Factorization (NMF) is often applied to

spectrogram-like representations, and has proved to provide

a successful and promising framework for source separa-

tion [1]. Magnitude-recovery techniques are also useful for

restoring missing data in corrupted signals [2].

However, when it comes to resynthesizing time signals,

the phase recovery of the corresponding Short-Time Fourier

Transform (STFT) is necessary. In the source separation

framework, a common practice consists in applying Wiener-

like filtering (soft masking of the complex-valued STFT of

the original mixture). When there is no prior on the phase

of a component (e.g. in the context of audio restoration),

a consistency-based approach is often used for phase re-

covery [3]. That is, a complex-valued matrix is iteratively

computed to be close to the STFT of a time signal. A re-

cent benchmark has been conducted to assess the potential of

source separation methods with phase recovery in NMF [4].

It points out that consistency-based approaches provide poor

results in terms of audio quality. Besides, Wiener filtering

fails to provide good results when sources overlap in the

TF domain. Thus, phase recovery of modified audio spec-

trograms is still an open issue. The High Resolution NMF

(HRNMF) model [5] has shown to be a promising approach,

since it models a TF mixture as a sum of autoregressive (AR)

components in the TF domain, thus dealing explicitly with a

phase model.

Another approach to reconstruct the phase of a spectro-

gram is to use a phase model based on the observation of

fundamental signals that are mixtures of sinusoids. Contrary

to consistency-based approaches using the redundancy of the

STFT, this model exploits the natural relationship between

adjacent TF bins due to the model. This approach is used in

the phase vocoder algorithm [6], although it is mainly dedi-

cated to time stretching and pitch modification of signals, and

it requires the phase of the original STFT. More recently, [7]

proposed a complex NMF framework with phase constraints

based on sinusoidal modeling, and [8] used a similar tech-

nique for recovering the phase of speech signals in noisy

mixtures. Although promising, these approaches are limited

to harmonic and stationary signals. Besides, the phase con-

strained complex NMF model [7] requires prior knowledge

on fundamental frequencies and numbers of partials. In the

speech enhancement framework introduced in [8], the funda-

mental frequency is estimated, however the estimation error

is propagated and amplified through partials and time frames.

In this paper, we propose a generalization of this approach

that consists in estimating the phase of mixtures of sinusoids

from its explicit calculation. We then obtain an algorithm

which unwraps the phases horizontally (over time frames) to

ensure the temporal coherence of the signal, and vertically

(over frequency channels) to enforce spectral coherence be-

tween partials, which is observed in musical acoustics for

several instruments [9]. Our technique is suitable for a vari-

ety of pitched music signals, such as piano or guitar sounds,

but percussive signals are outside the scope of this research.

A dynamic estimation (at each time frame) of instantaneous

frequencies extends the validity of this technique to non-

stationary signals such as cellos and speech. This technique

is tested on a variety of signals and integrated in an audio
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restoration framework.

The paper is organized as follows. Section 2 presents the

horizontal phase unwrapping model. Section 3 is dedicated

to phase reconstruction on onset frames. Section 4 presents a

performance evaluation of this technique through various ex-

periments. Section 5 introduces an audio restoration frame-

work using this phase recovery method. Finally, section 6

draws some concluding remarks.

2. HORIZONTAL PHASE RECONSTRUCTION

2.1. Sinusoidal modeling

Let us consider a sinusoid of normalized frequency f0 ∈
[− 1

2 ;
1
2 ], initial phase φ0 ∈ [−π;π] and amplitude A > 0:

∀n ∈ Z, x(n) = Ae2iπf0n+iφ0 . (1)

The expression of the STFT is, for each frequency channel

k ∈ J−F−1
2 ; F−1

2 K (with F the odd-valued Fourier transform

length) and time frame t ∈ Z:

X(k, t) =

N−1
∑

n=0

x(n+ tS)w(n)e−2iπ k

F
n (2)

where w is a N sample-long analysis window and S is

the time shift (in samples) between successive frames. Let

W (f) =
∑N−1

n=0 w(n)e−2iπfn be the discrete time Fourier

transform of the analysis window for each normalized fre-

quency f ∈ [− 1
2 ;

1
2 ]. Then the STFT of the sinusoid (1)

is:

X(k, t) = Ae2iπf0St+iφ0W

(

k

F
− f0

)

. (3)

The unwrapped phase of the STFT is then:

φ(k, t) = φ0 + 2πSf0t+ ∠W

(

k

F
− f0

)

(4)

where ∠z denotes the argument of the complex number z.

This leads to a relationship between two successive time

frames:

φ(k, t) = φ(k, t− 1) + 2πSf0. (5)

More generally, we can compute the phase of the STFT of

a frequency-modulated sinusoid. If the frequency variation is

low between two successive time frames, we can generalize

the previous equation:

φ(k, t) = φ(k, t− 1) + 2πSf0(t). (6)

Instantaneous frequency must then be estimated at each

time frame to encompass variable frequency signals such as

vibratos, which commonly occur in music signals (singing

voice or cello signals for instance).

2.2. Instantaneous frequency estimation

Quadratic interpolation FFT (QIFFT) is a powerful tool for

estimating the instantaneous frequency near a magnitude peak

in the spectrum [10]. It consists in approximating the shape

of a spectrum near a magnitude peak by a parabola. This

parabolic approximation is justified theoretically for Gaus-

sian analysis windows, and used in practical applications for

any window type. The computation of the maximum of the

parabola leads to the instantaneous frequency estimate. Note

that this technique is suitable for signals where only one sinu-

soid is active per frequency channel.

The frequency bias of this method can be reduced by in-

creasing the zero-padding factor [11]. For a Hann window

without zero-padding, the frequency estimation error is less

than 1 %, which is hardly perceptible in most music applica-

tions according to the authors.

2.3. Regions of influence

When the mixture is composed of one sinusoid, the phase

must be unwrapped in all frequency channels according to (5)

using the instantaneous frequency f0. When there is more

than one sinusoid, frequency estimation is performed near

each magnitude peak. Then, the whole frequency range must

be decomposed in several regions (regions of influence [6])

to ensure that the phase in a given frequency channel is un-

wrapped with the appropriate instantaneous frequency.

At time frame t, we consider a magnitude peak Ap in

channel kp. The magnitudes (resp. the frequency channels) of

neighboring peaks are denoted Ap−1 and Ap+1 (resp. kp−1

and kp+1). We define the region of influence Ip of the p-th

peak as follows:

Ip =

[

Apkp−1 +Ap−1kp

Ap +Ap−1
;
Apkp+1 +Ap+1kp

Ap +Ap+1

]

. (7)

The greater Ap is relatively to Ap−1 and Ap+1, the wider

Ip is. Note that other definitions of regions of influence exist,

such as choosing the limit between two peaks as the channel

of lowest energy [6].

3. ONSET PHASE RECONSTRUCTION

3.1. Impulse model

Impulse signals are useful to obtain a relationship between

phases over frequencies (vertical unwrapping) [12]. Although

they do not accurately model attack sounds, they provide sim-

ple equations that can be further improved for more complex

signals. The model is:

∀n ∈ Z, x(n) = Aδn−n0
, (8)
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where δ is equal to one if n = n0 (the so-called attack time)

and zero elsewhere and A > 0 is the amplitude. Its STFT is

equal to zero except within attack frames:

X(k, t) = Aw(n0 − St)e−2iπ k

F
(n0−St). (9)

We can then obtain a relationship between the phases of

two successive frequency channels within an onset frame, as-

suming that w ≥ 0:

φ(k, t) = φ(k − 1, t)−
2π

F
(n0 − St), (10)

and φ(0, t) = 0. The similarity between (10) and (5) was

expected because the impulse is the dual of the sinusoid in

the TF domain. This comparison naturally leads to estimat-

ing parameter n0 (the ”instantaneous” attack time) in each

frequency channel as we previously estimated f0 (the instan-

taneous frequency) in each time frame (cf. equation (6)). This

leads to the following vertical unwrapping equation:

φ(k, t) = φ(k − 1, t)−
2π

F
(n0(k)− St). (11)

3.2. Attack time estimation

In order to estimate n0(k), we look at the magnitude of the

STFT of the impulse in a frequency channel k:

|X(k, t)| = Aw(n0(k)− St). (12)

We then choose n0 such that the STFT magnitude of

the impulse over onset frames has a shape similar to that

of the analysis window. For instance, a least-squares esti-

mation method can be used. We tested this technique on

synthetic mixtures of impulses: perfect reconstruction has

been reached. Alternatively, we can also estimate n0(k) with

a temporal QIFFT and update the phase with (11).

4. EXPERIMENTAL EVALUATION

4.1. Protocol and datasets

The MATLAB Tempogram Toolbox [13] provides a fast and

reliable onset frames detection from spectrograms. We use

several datasets in our experiments:

A: 30 mixtures of piano notes from the Midi Aligned Piano

Sounds (MAPS) database [14],

B: 30 piano pieces from the MAPS database,

C: 12 string quartets from the SCore Informed Source Sepa-

ration DataBase (SCISSDB) [15],

D: 40 speech excerpts from the Computational Hearing in

Multisource Environments (CHiME) database [16].

The data is sampled at Fs = 11025 Hz and the STFT

is computed with a 512 sample-long Hann window, 75 %
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phase vocoder

QIFFT

Fig. 1: Spectrogram of a mixture with vibrato (left) and

instantaneous frequencies in the 2800 Hz channel (right)

Dataset Error GL PU

A 0.38 −6.9 2.5

B 0.36 −12.6 1.7

C 0.41 −9.7 5.3

D 0.52 −0.4 0.5

Table 1: Frequency estimation error (%) and reconstruction

performance (SDR in dB) for various audio datasets

overlap and no zero-padding. The Signal to Distortion Ra-

tio (SDR) is used for performance measurement. It is com-

puted with the BSS Eval toolbox [17] and expressed in dB.

The popular consistency-based Griffin and Lim (GL) algo-

rithm [3] is also used as a reference. We run 200 iterations of

this algorithm (performance is not further improved beyond).

It is initialized with random values, except for TF bins where

the phase is known. Results are averaged over 30 initializa-

tions.

Simulations are run on a 3.60GHz CPU processor and

16Go RAM computer. The related MATLAB code and some

sound excerpts are provided on the author web page1.

4.2. Horizontal phase reconstruction

Figure 1 illustrates the instantaneous frequencies estimated

with the phase vocoder technique [6], used as a reference, and

with our algorithm on a vibrato. Identical results are obtained.

Our method is thus suitable for estimating variable instanta-

neous frequency signals as well as stationary components. We

computed the average frequency error between phase vocoder

and QIFFT estimates for the datasets presented in section 4.1.

The results presented in the first column of Table 1 confirm

that QIFFT provides an accurate frequency estimation.

Table 1 also presents reconstruction performance for Grif-

fin and Lim (GL) and our Phase Unwrapping (PU) algorithms.

In both cases the onset phases are known. Our approach sig-

nificantly outperforms the traditional GL method: both sta-

tionary and variable frequency signals are reconstructed ac-

curately. In addition, our algorithm is faster than the GL

1http://perso.telecom-paristech.fr/magron/.
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Method GL Imp QI Rand 0 Alt

SDR (dB) −7.9 −4.0 −2.6 −4.3 −4.7 −3.5

Table 2: Signal reconstruction performance of different

methods on dataset A
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Fig. 2: Reconstruction performance of different methods and

percentages of corruption on dataset A

technique: on a 3min 48s piano piece, the reconstruction is

performed in 18s with our approach and in 623s with GL al-

gorithm.

4.3. Onset phase reconstruction

Onset phases can be reconstructed with n0-estimation using

the impulse magnitude (Imp) or with QIFFT (QI). We also

test random phases values (Rand, no vertical coherence), zero

phases (0, partials in phase) and alternating partial phases be-

tween 0 and π (Alt, phase-opposed partials). These choices

are justified by the observation of the phase relationships be-

tween piano partials in musical acoustics [9]. The phase of

the partials is then fully recovered with horizontal unwrap-

ping. We test these methods on dataset A. Results presented

in Table 2 show that all our approaches provide better results

than GL algorithm on this class of signals. Onset phase un-

wrapping with n0-estimation based on QIFFT provides the

best result, ensuring some form of vertical coherence. In par-

ticular, we perceptually observe that this approach provides a

neat percussive attack.

4.4. Complete phase reconstruction

We consider unaltered magnitude spectrograms from dataset A.

A variable percentage of the STFT phases is randomly cor-

rupted. We evaluate the performance of our algorithm to

restore the phase both on onset and non-onset frames.

Figure 2 confirms the potential of this technique. Our

method produced an average increase in SDR of 6dB over

the corrupted data. It also performs better than the GL algo-

rithm when a high percentage of the STFT phases must be

recovered.

However, note that this experiment consists in phase re-

construction of consistent spectrograms (i.e positive matrices
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Fig. 3: Piano note spectrogram: original (left), corrupted

(center) and restored (right)

Dataset AR HRNMF GL PU

A 11.4 16.9 8.6 11.7

B 4.3 10.9 5.9 7.1

C 8.2 10.6 6.6 7.1

D 8.3 10.9 8.9 9.4

Table 3: Signal restoration performance (SDR in dB) for

various methods and datasets

that are the magnitude of the STFT of a time signal): GL

algorithm is then naturally advantaged in this case. Realis-

tic applications (cf. next section) involve the restoration of

both phase and magnitude, which leads to inconsistent spec-

trograms.

5. APPLICATION TO AUDIO RESTORATION

A common alteration of music signals is the presence of noise

on short time periods (a few samples) called clicks. We cor-

rupt time signals with clicks that represent less than 1 % of

the total duration. Clicks are obtained by differentiating a 10
sample-long Hann window and added to the clean signal.

Magnitude restoration of missing bins is performed by

linear interpolation of the log-magnitudes in each frequency

channel. Figure 3 illustrates this technique. Phase recovery

is then performed with our method (PU) or alternatively with

the GL algorithm. We compare those results to the traditional

restoration method based on autoregressive (AR) modeling of

the time signal [18], and with HRNMF [5].

Table 3 presents results of restoration. HRNMF provides

the best results in terms of SDR. Though, our approach out-

performs the traditional method and GL algorithm. Besides,

we underline that the HRNMF model uses the phase of the

non-corrupted bins, while our algorithm is blind. Lastly, our

technique remains faster than HRNMF: for a 3min55s piano

piece, restoration is performed in 99s with our algorithm and

in 222s with HRNMF.
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6. CONCLUSION

The new phase reconstruction technique introduced in this

work appears to be an efficient and promising method. The

analysis of mixtures of sinusoids leads to relationships be-

tween successive TF bins phases. Physical parameters such

as instantaneous frequencies and attack times are estimated

dynamically, encompassing a variety of signals such as piano

and cellos sounds. The phase is then unwrapped in all fre-

quency channels for onset frames and over time for partials.

Experiments have demonstrated the accuracy of this method,

and we integrated it in an audio restoration framework. Better

results than with traditional methods have been reached.

The reconstruction of onset frames still needs to be im-

proved as suggested by the variety of data. Further work

will focus on exploiting known phase data for reconstruction:

missing bins can be inferred from observed phase values. Al-

ternatively, time-invariant parameters such as phase offsets

between partials [19] can be used. Such developments will be

introduced in an audio source separation framework, where

the phase of the mixture can be exploited.
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