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ABSTRACT
In this article a new matching pursuit algorithm with con-
tinuous radar resolution cell rejection is proposed. It allows
matching pursuit to work well even if more than one target
is present in some resolution cell (unresolved targets) of
the radar matched filter: it prevents its tendency to generate
spurious sidelobes or miss a weaker target hidden in stronger
target sidelobes. The FMCW radar case is particularly in-
vestigated which offers a very natural and computationally
inexpensive solution to the problem that can also be applied
in spectral analysis. The extension of the proposed approach
to any radar waveform is also investigated.

Index Terms— Matching Pursuit, Radar Signal Process-
ing, Discrete Prolate Spheroidal Sequences,Spectral Estima-
tion , Unresolved targets

I. INTRODUCTION

Traditionally, the radar signal processing chain consists
of a (single target) matched filter processing followed by
a detection step [1] in order to both detect and estimate
the target’s range and radial velocity (Doppler shift). The
matched filter is usually evaluated on a grid whose step is
equal to the resolution capability of the radar.

This procedure, when done iteratively and followed by
a rejection step (estimated target contribution removal) can
be seen as a clean [2] or matching pursuit algorithm [3].
Matching pursuit is popular in compressive sensing, which
has gained interest in the radar community [4]. The principle
of matching pursuit is the following: estimate the strongest
components of the signal (in the matched filter magnitude
sense) and reject them iteratively from the original signal.

A fundamental hypothesis for this algorithm to be efficient
is that there is no unresolved targets: that is to say no more
than one dominant scatterer is present inside each resolution
cell. Otherwise, the estimation can become so biased that the
rejection step can only perform poorly and spurious detection
may occur. It may also prevent detection of weaker targets
hidden in the strongest sidelobes. High resolution in radar
is only possible in not too complex scenario [5], so that
separation of unresolved scatterers is usually not possible. To
the best of our knowledge, the issue of unresolved targets in

radar has mainly been investigated for (monopulse) Angle
of Arrival estimation (see [6] and references inside). [7]
proposes to reject several components inside the matched
filter resolution cell, which can be costly and may not be
efficient for high SNR targets.

In this article, in order to deal with unresolved targets in
active radar, we propose a new matching pursuit algorithm
with a (continuous) rejection on the estimated cell. The
philosophy is the following: when a target has been detected
in a resolution cell, then all possible contributions belonging
to this cell should be removed from the measured signal. We
call it “continuous” rejection since all contributions whose
continuous parameters fall inside the considered cell must
be rejected, contrary to the classical processing where only
the cell center contribution is removed. We will particularly
investigate the Frequency Modulated Continuous Waveform
(FMCW) radar case, which is of great interest for low cost
devices: it offers a simple and natural frame to solve our
problem that becomes a multiple tone frequencies estimation.
As we will see, in this case the projection is realized thanks
to the Discrete Prolate Spheroidal Sequences (DPSS) [8] and
that the proposed processing becomes particularly simple
and computationally inexpensive. We will also show that,
relying on a common approximation, the proposed scheme
for FMCW can also be generalized to any waveform. Note
that DPSS have recently been introduced for compressed
sensing [9], showing their nice properties to build a good
compressive dictionary. The proposed work extends [10]
where the rejection is investigated on the Doppler axis only
and for passive radar. Although [11] has suggested the use
of DPSS for interference cancellation in compressed sensing
for radio, the goal was not to perform continuous rejection.
We will show that the choice of DPSS arises naturally and
how it can be adapted to the classic active radar framework.

The outline of the paper lies as follows: in the second
section we propose the radar model. In section III the
continuous rejection projector is investigated, first for the
FMCW radar case, and then it is shown how it can be
adapted to any waveform. Finally, a simulation in section
IV show that the proposed method outperforms the classic
matched filter processing in presence of unresolved targets.
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II. SIGNAL MODEL

We consider a common narrowband radar transmitting a
signal s(t) (waveform). The received signal x(t) is then

x(t) =

Q∑
q=1

ρqs(t− τq)ej2πνqt + n(t), (1)

where τq denotes the unknown round trip time delay for the
radar signal scattered by the q− th target, νq = 2vq/λ is the
unknown Doppler shift, where λ is the carrier wavelength
and vq the target radial velocity. ρq denotes the unknown
target amplitude and n(t) is an additive noise, considered
as centered white complex Gaussian of known variance σ2.
A sequence of P replicas (each of period Tp) is sent and
the corresponding received signal is then sampled at period
Ts = Tp/N . We consider the overall observation vector

y =
[

xT0 ... xTP−1

]T
, (2)

where, denoting tn = nTs

xp =
[
x(t1 + pTp) ... x(tN + pTp)

]T
. (3)

Since it is usually assumed that the Doppler phase 2πνqt
does not vary significantly during a period Tp [1] and that
ρq is constant [1] during the acquisition

y =

Q∑
q=1

ρqu(τq, νq) + n, (4)

u(τq, νq) = aP (2πνqTp)⊗ s(τq), (5)

aP (ω) =
[

1 ejω ... ej(P−1)ω
]T
, (6)

s(τ) =
[
s(t1 − τ) ... s(tN − τ)

]T
, (7)

where ⊗ is the Kronecker product and n the stacked noise
vector. Note that the model (4) is separable in τ and ν.

In case of FMCW radar, the waveform is s(t) = ejαt
2

.
The transmitted signal is then multiplied by the sent wave-
form replica, forming the beat signal observation vector

y =
[

xT0 � sH(0) ... xTP−1 � sH(0)
]T
, (8)

where � is the Hadamard product (element wise). Then,

y =

Q∑
q=1

ρqaP (ω(νq))⊗ aN (ω(τq)) + n, (9)

ω(ν) = 2πνTp, ω(τ) = −2ατTs. (10)

Algorithm 1 Matching pursuit in radar
y(0) = y, τ(0) = {∅},ν(0) = {∅}
At the i− th iteration

1) Matched filter : estimate the parameters (on a grid){
τ̂(i), ν̂(i)

}
= arg max

τ,ν

|yH(i)u(τ, ν)|2
||u(τ, ν)||2

2) Reject the estimated component from the signal:

y(i+1) = y(i) −Π(u(τ̂(i), ν̂(i)))y(i),

where Π(u) is defined in (11).
3) Repeat until the maximum iteration number is reached

or until with (τ, ν) belonging to a grid

max
τ,ν

|yH(i)u(τ, ν)|2
||u(τ, ν)||2 ≤ γ,

where γ is a threshold set according to a desired
probability of false alarm (Pfa).

III. MATCHING PURSUIT WITH CONTINUOUS
REJECTION

Matching pursuit can be viewed in radar context as a clean
algorithm [2] as summarized in Algorithm 1.

This technique is efficient when no more than one scatterer
is present in each resolution cell of the matched filter
(resolved targets). Otherwise the classic matched filter may
fail to separate several scatterers inside the resolution cell -
quite likely in common radar signal processing [5]- and then
the estimation step will be so biased that the rejection will
perform poorly. Then the matching pursuit tends to produce
spurious detections or can even misdetect weaker targets
hidden in stronger target sidelobes.

This is why, to allow the matching pursuit to perform
in presence of unresolved targets we propose to replace step
(2) in Algorithm 1 by a (continuous) rejection of all possible
contributions inside the detected resolution cell.

III-A. Building the continuous projector

We would like to build the projector Π(U(τ0, ν0)) on all
the components of u(τ, ν) for all (τ, ν) in the resolution
cell

[
τ0 − ∆τ

2 , τ0 + ∆τ

2

]
×
[
ν0 − ∆ν

2 , ν0 + ∆ν

2

]
, ∆τ and ∆ν

being respectively the delay and Doppler resolution. We
recall that the orthogonal projector on any matrix A is:

Π(A) = A
(
AHA

)†
AH , (11)

where (.)† denotes the Moore-Penrose inverse, which is
equal to the classic inverse when the matrix is invertible.

In order to build the continuous projector we will first
consider a projector on 2K + 1 contributions inside the
resolution cell and let K tend to infinity. Let us consider

23rd European Signal Processing Conference (EUSIPCO)

1817



the following NP × (2K + 1)2 matrix

UK(τ0, ν0) = AP,K

(
ω(ν0),∆ω(ν0)

)
⊗ SN,K(τ0,∆τ ),

(12)
where the k−th column of those matrices is

[SN,K(τ0,∆τ )]k = s (τk) , 1 ≤ k ≤ 2K + 1 (13)

with τk = τ0 − (K − k + 1) ∆τ

2K and

[AP,K(ω0,∆ω)]k = aP (ωk) , 1 ≤ k ≤ 2K + 1 (14)

with ωk = ω0 − (K − k + 1)∆ω

2K , respectively.
The sought projector Π(U(τ0, ν0)) can be seen as the

limit of the NP×NP orthogonal projector Π(UK(τ0, ν0)):

Π(U(τ0, ν0)) = lim
K→+∞

Π(UK(τ0, ν0)), (15)

which exists when sup
K
||U†K(τ0, ν0)|| < +∞ [12].

We propose to evaluate it thanks to the following remarks:
Remark 1. For any two matrices A and B, we have

Π(A⊗B) = Π(A)⊗Π(B). (16)

Remark 2. For any N × K matrix A we have A =
UADAVH

A , where DA is a N × K diagonal matrix con-
taining the N0 singular values of A, and UA and VA are
N ×N and K ×K orthonormal matrices, respectively. So,

Π(A) = UAI1:N0U
H
A , (17)

= Π(AAH), (18)

where I1:N0
is a diagonal matrix with its first N0 components

being equal to 1, the others are zeros. But UA also contains
the eigenvectors of the N ×N matrix βAAH for any β.

Thanks to Remark 1, Π(UK(τ0, ν0)) in (12) is directly
deduced from Π(SN,K) and Π (AP,K): this structure en-
ables to lower its computational cost. Remark 2 shows that
Π(SN,K) and Π (AP,K) , whose analytical expression is
not trivial, can be evaluated thanks to the eigenvectors of
the matrices ∆τ

2K+1SN,KSHN,K and ∆ω

2K+1AP,KAH
P,K .

As a consequence, when K grows to infinity, we propose
to deduce Π(U(τ0, ν0)) in (15) from the eigenvectors of

SN (τ0,∆τ ) = lim
K→+∞

∆τ

2K + 1
SN,KSHN,K

= lim
K→+∞

2K+1∑
k=1

∆τ

2K + 1
s (τk) sH (τk)

=

ˆ τ0+ ∆τ
2

τ0−∆τ
2

s (τ) sH (τ) dτ, (19)

and

AP (ω0,∆ω) = lim
K→+∞

∆ω

2K + 1
AP,KAH

P,K

=

ˆ ω0+ ∆ω
2

ω0−∆ω
2

aP (ω) aHP (ω) dω. (20)

We have (AP (ω0,∆ω))kl = ej(k−l)ω0∆ωsinc ((k − l)∆ω) .

III-B. FMCW radar case
For FMCW radar, the delay estimation is turned into the

estimation of the beat signal frequencies. According to (9)
SN,K(τ0,∆τ ) is replaced by AN,K

(
ω(τ0),∆ω(τ0)

)
. In this

case the projector (15) is deduced from the eigenvectors of
two matrices with the following structure

[MN (ωi)]kl = ej(k−l)ωi
1

N
sinc

(
k − l
N

)
, (21)

where ωi = i/N , with i ∈ {0, 1, ..., N−1} since in radar, the
angular frequencies ω(τ) and ω(ν), related to delay τ and
Doppler ν, are sampled on a grid (normalized by 2πTs and
2πTp, respectively) defined by their corresponding resolution
step (∆ω(τ) = 1/N and ∆ω(ν) = 1/P ). Obviously,

MN (ω) =
[
aN (ω) aHN (ω)

]
�BN, 1

2N
, (22)

(BN,W )k,l = 2W sinc(2W (k − l)), (1 ≤ k, l ≤ N). (23)

We denote by {uk(N,W ), 1 ≤ k ≤ N} the eigen-
vectors of BN,W with the corresponding eigenvalues
{λk(N,W ), 1 ≤ k ≤ N}, sorted by decreasing magnitude.

Remark 3. Let A and B be two N ×N Hermitian matrices
with A =

[
aN (ω) aHN (ω)

]
� B. Then, due to the par-

ticular structure of aN (ω), the eigenvector decomposition
of A is simply deduced from the decomposition of B:
A =

∑N
n=1 λnanaHn where an = aN (ω) � bn with

B =
∑N
n=1 λnbnbHn .

According to Remark 3 and (22), the eigenvectors of
MN (ω) can be deduced from those of BN, 1

2N
. Finally

Π (U(τ0, ν0)) = Π (MP (ω(ν0)))⊗Π (MN (ω(τ0))) ,
(24)

where, for any ω,

Π (MN (ω)) = V1:N0
(ω)VH

1:N0
(ω), (25)

V1:N0
(ω) =

(
1TN0
⊗ aN (ω)

)
�U1:N0

(
N,

2

N

)
, (26)

U1:N0
(N,W ) =

[
u1(N,W ) ... uN0

(N,W )
]
. (27)

where 1N is a N × 1 vector composed of ones.
Then, all essential information is embedded in the eigen-

vectors of BN,W for W = ∆/2 which are nothing but the
well known DPSS [8].

Note that the projector (25) is also the minimizer of the
projection residue over the cell

E(ΠN0
) =

ˆ ω+ ∆
2

ω−∆
2

‖aN (ω′)−ΠN0
aN (ω′)‖2 dω′, (28)

for any orthonormal projector ΠN0
of rank N0 [9], and

E
(
V1:N0

(ω)VH
1:N0

(ω)
)

=

N∑
k=N0+1

λk

(
N,

∆

2

)
, (29)
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which gives us a means to quantify the quality of the
rejection inside the cell.

One interesting property of the DPSS is that the magnitude
of the eigenvalues decreases very quickly, as shown in Figure
1. For that reason, only a few (e.g. N0 ≤ 8) DPSS are needed
to compute the projectors Π(MN (ω)) and Π(MP (ω)),
with a low computational time. Moreover, these DPSS
(corresponding to BN, 1

2N
and BP, 1

2P
, respectively) can be

computed offline for once. The online additional computa-
tional cost of the proposed method is then very small and
resorts to simple matrix products (no svd is required): once
a detection occurs in a cell the corresponding 2D continuous
projector Π(U(τ0, ν0)) in (24) is simply deduced from two
1D projectors, built with their corresponding N0 “baseband”
DPSS and translated to the cell position thanks to (26).

The selected number of eigenvectors N0 in the single
dimensional projector (25) has an impact on the rejection
performance. In Figure 2, we plotted the residue after
projection for several values of N0. As we can see, the more
eigenvalues we take, the better the rejection in the cell, but
also the weaker the magnitude in the nearest cells, which
may cause bias or even misdetection in those cells. This
suggests that N0 should be chosen depending on the desired
rejection level: that is to say the estimated SNR in the cell.

III-C. Generalization to any waveform

Writing the discrete Fourier transform (DFT) of the se-
quence {s(tn), 1 ≤ n ≤ N} by {s(fk), 1 ≤ k ≤ N} with
fk = k−1

NTs
, we can use the following common approximation

s(tn − τ) ≈
N∑
k=1

s(fk)e−j2πfkτej2πfktn . (30)

Then if we denote sf =
[
s(f1) ... s(fN )

]T
, we have

s(τ) ≈ FHN

[
sf � aN

(
− 2π

NTs
τ

)]
, (31)
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Fig. 2. Residue after projection on ΠN0 , built with the N0

strongest eigenvectors of M500(1/2) according to (25).

where FN is the N × N Fourier matrix. We have then,
inserting (31) in (19) and using (20), with ∆τ = 1/N

SN (τ0,∆τ ) ≈ FHN ŠN (τ0)FN , (32)

ŠN (τ) = sfs
H
f �MN

(
− 2π

NTs
τ

)
. (33)

Π (SN (τ0,∆τ )) can then be deduced as in (25) from the
N0 principal eigenvalues of FHN ŠN (τ)FN , linked with the
DPSS thanks to (33) and (22).

Thus, using the common DFT approximation (30), the
proposed approach for FMCW can be generalized to any
waveform provided the DFT samples of the signal waveform
are known, which is common.

IV. NUMERICAL RESULTS
In this section we will focus on FMCW radar. This kind

of radar offers several advantages: the range matched filter
is turned into an FFT of the beat signal (analogical multi-
plication between received and transmitted signal), which is
simple and very fast. Moreover, the beat signal can usually
be sampled at much lower rate than the Nyquist rate of the
waveform s(t), which is suited to low cost devices.

In Figure 3 we consider a scenario described in Table I:
we consider three targets where the first one is unresolved
(4 off-grid scatterers in the same resolution cell) with a
very strong SNR and the others are resolved targets with a
much weaker SNR. According to the scenario described in
caption of Figure 3 we have a corresponding range resolution
∆r = 8.5 m and a radial velocity resolution ∆v = 3
m/s. We defined the SNR of a target (or scatterer) by
SNRq = |ρq|2||s(0)||2/σ2 . Four algorithms are compared:
• “MP”: is a classic matching pursuit performed either

“on-grid” or with an additional “off-grid” local opti-
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Fig. 3. Matching pursuit output for some unresolved targets
according to Table I. Ts = 2µs, Tp = 1 ms, λ = 0.3 m,
α = π× 200 MHz/s, N = P = 500, Pfa = 10−6, N0 = 4.

Cell [range[m], velocity[m/s]] [367.5,27] [367.5,36] [382.5,27]
Number of scatterers 4 1 1

Scatterers SNR (each) [dB] 55 15 20
Estimated target SNR [dB] 61.3 13.6 18.6

Table I. Target parameters and estimated target SNR for the
proposed method.

mization of the matched filter in step (1) in Algorithm
1, to deal with off-grid targets.

• Algorithm [7].
• “MP+CR”: is the proposed matching pursuit with the

continuous rejection (projector (24)) in step (2).
As we can see in Figure 3 the proposed method is able to
distinguish all three targets, even the two weakest located
close to the strong unresolved target. The results in Table
I show that the proposed method offers good estimation of
the target SNR. As expected, the classic matching pursuit
fails and produces a lot of spurious peaks: since the first
target is unresolved, the estimates are strongly biased and
the algorithm needs a lot of iterations to remove the true
contribution. Due to the first high SNR target, algorithm [7]
produces false detection too.

Note that the proposed algorithm can be adapted to off-
grid targets similarly to what is done for “MP off-grid”.

V. CONCLUSION
In this paper, a new matching pursuit algorithm for

unresolved targets in active radar thanks to a (continuous)
projection step on the entire resolution cell is proposed. It
has been shown to perform well in presence of unresolved
targets, contrary to the classic matching pursuit or clean
algorithm. We particularly investigate the FMCW radar case,

well suited for low-cost radar devices, where the problem
can be turned into a spectral estimation problem: we showed
that the continuous projector naturally leads to consider the
Discrete Prolate Spheroidal Sequences and offers a simple
and computationally inexpensive solution. The extension to
any waveform is also investigated.
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