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ABSTRACT

In this paper we propose a Track Before Detect (TBD) fil-
ter for Direction Of Arrival (DOA) tracking of multiple tar-
gets from phased-array observations. The phased-array model
poses a new problem since each target emits a signal, called
source signal. Existing methods consider the source signal as
part of the system state. This is inefficient, especially for par-
ticle approximations of posteriors, where samples are drawn
from the higher-dimensional posterior of the extended state.
To address this problem, we propose a novel Marked Pois-
son Point Process (MPPP) model and derive the Probability
Hypothesis Density (PHD) filter that adaptively estimates tar-
get DOAs. The PPP models variations of both the number
and the location of points representing targets. The mark of a
point represents the source signal, without the need of an ex-
tended state. Recursive formulas for the MPPP PHD filter are
derived with simulations showcasing improved performance
over state-of-the art methods.

Index Terms— DOA tracking, marked Poisson point pro-
cess, PHD filter, track before detect, DBSCAN.

1. INTRODUCTION AND RELATED WORK

Modern radar and sonar systems employ antenna and hy-
drophone arrays in order to detect, localize and track various
targets. Target localization is achieved by estimating the Di-
rection Of Arrival (DOA) of the source signal. DOA tracking
is traditionally achieved through a two stage process referred
to as Track While Scan (TWS). Firstly, targets are detected
and a set of DOA estimates is formed. The resulting DOA es-
timates suffer from origin uncertainty, that is, we do not know
from which target the DOA estimate originates. Secondly,
filtering the DOA estimates with the kinematic target-model
and resolving the origin uncertainty problem is dealt with
probabilistic data association filters [1]. In [2, 3] we proposed
a TWS system for a sonar image reconstruction application.
Track Before Detect (TBD) filters, are aimed at tracking
targets directly from the antenna signal, i.e. without perform-
ing any pre-detection or estimation procedures. Furthermore,

This work was funded by a grant from the Direction Générale de
I’Armement (French MoD) and the Carnot Institute.

978-0-9928626-3-3/15/$31.00 ©2015 IEEE

the MPPP model that we employ is capable of taking into ac-
count target birth and death, i.e. a variable number of targets.
The MPPP is taken to be simple, hence a random finite set
formalism is also possible with the PHD as the first moment
density [4, Sec. IV.C]. Derivation of the PHD filter within
the point process framework is considered in [5]. The PHD
filter of [4], with subsequent implementations given in [6], is
derived for TWS systems and is not directly applicable for
TBD. A PHD-TBD filter for amplitude sensors was derived
in [7]. However, in array processing, the DOA information
is contained in the phase differences between the signals re-
ceived by the sensor array and, in general, we are not directly
interested in signal amplitudes. Furthermore, array observa-
tions result from the superposition of individual source con-
tributions. Unlike [7], the individual source amplitudes are
unknown and modeled as randomly fluctuating complex sig-
nals. Thus, [7] cannot be directly used for the standard DOA
tracking problem, and further developments of the PHD must
be addressed to tackle this problem. Augmenting the state
of each target with the source signal leads to inefficient par-
ticle filter implementations, which approximate the higher-
dimensional posterior corresponding to the augmented state.
In [8] an augmented state is considered, while target births
and deaths are resolved by a reversible jump MCMC algo-
rithm. In [9] a multi-Bernoulli filter for DOA tracking is pro-
posed, by using the MUSIC [10, Ch. 4.5] pseudo-spectrum as
the likelihood function. A sparse DOA estimator is proposed
in [11], by minimizing a functional defined on a discrete space
and under sparse constants. Given the sequential nature of the
estimator, DOA tracking of kinematic targets is possible.

The novelty of our approach is the proposal of an MPPP
model and the derivation of the first-order moment measure
density filter (PHD) for DOA tracking, effectively extending
in the case of MPPP the aforementioned multi-target TBD
filters. A PPP (denoted as ground PPP) is employed to de-
scribe both the target number and target locations in some
state space. Each target (or point) generates a source signal,
modeled as a stochastic process and representing the mark of
the point. The process containing the ground PPP and the tar-
get marks is the Marked PPP (MPPP). The PHD of the ground
PPP is shown to be a sufficient statistic for target state in-
ference, with the marks being analytically integrated in the
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filter update procedure. Therefore, the proposed filter prop-
agates a particle approximation for the PHD of the ground
PPP, instead of a density function defined on the target and
mark spaces. The point-mark relationship is naturally mod-
eled by the MPPP, which would be otherwise lost in an ex-
tended state formalism. The ability of the proposed filter to
yield one estimated set of target DOAs per array observation
is necessary for high-resolution image formation algorithms,
like sonar bathymetry [12, 13, 14]. In contrast, most TWS
methods process several array observations to produce one
set of target DOA estimates, and hence, lead to a reduced res-
olution effect in imaging applications.

The paper is organized as follows: section 2 presents the
array signal model and the MPPP state formalism. In section
3 we derive the filtering equations. Results on simulated array
data are given in section 4 and we conclude in section 5.

2. ARRAY SIGNAL AND MPPP FORMALISM

We assume a simple and finite PPP X; = {x},--- ,x]'} at
time ¢ that characterizes both the number of points/targets N,
and their locations x; as random. /N, is a Poisson random
variable and conditional to the number of points, the elements
of X, are independent and identically distributed in the d di-
mensional state-space R C R?. The probability distribution
of X; can be specified by the distribution of the number of
targets NV; and the joint distribution of the target positions,
conditional on the total number of targets [V;. Thus X} has an
associated density [5, eq. 2.4]:

p(X;) = e~ Jr P TT Dy (x), ¢))
x€Xt

where D, represents the intensity function defined on the
state-space R. For PPP, the first-order moment measure den-
sity, that is the PHD coincides with the intensity [4, Prop.
5]. Targets are presented as peaks of D; and thus target lo-
cations can be inferred from D;. Next we consider that each
point x; generates a mark s; in a mark space ' C C. The
point process {(x}, si)} on R x K is Poisson and represents
the MPPP X,. With X, usually called ground PPP [15, Ch.
6.4]. In this paper, marks represent the source signals gener-
ated by the targets, and are taken to be centered and circular
Gaussian random variables with power P: s; ~ N (s;0, P).
The MPPP X, is a PPP with points X = (x, s) and intensity
function D, (%) = Dy (x)N (s; 0, P), as given by the Marking
Theorem [16, Prop. 3.9] and [17, p. 55].

We assume an array signal y; € CM*1 received at time ¢
by an M —element array as the random sum

ye= > 8X +ny, )
iEXﬁ

where g(X;) = a(x;)s; and a is the array manifold vector.
The additive noise n; € CM*1is circular Gaussian with n; ~

N (n;0,02 1), The Signal to Noise Ratio (SNR) is given
by SNR = .

Generally, target tracking is conducted in the cartesian
coordinate system, with several kinematic models such as
the nearly constant velocity or the Wiener acceleration model
[18]. For distant targets, tracking in polar coordinates may be
adequate since pseudo-acceleration is small [19, Ch. 1.5]. In
this paper, we consider a simple first order kinematic model,
i.e. a nearly constant angular velocity model:

xX¢ = FyXy_1 + vy, 3)

where x; = [, 9t]T € R presents the single target state
vector. v; ~ N (vy;0,Q) represents the white model noise.
F; is a transition matrix specific for a constant velocity model
[18, Ch. 6.3.1].

Assuming a uniform linear array and far-field narrow-
band sources, the array manifold vector a(x;) is defined as:

a(x,) 2 D— o—J kA sin(0) efjkmwf1y:gnwg]T

where {}T represents the transpose operator. k represents the
wave number and A the inter-receiver spacing.

The proposed filter adaptively detects targets and esti-
mates target states x; from the MPPP posterior pt|t()~( =
p(Xt|y0;t), given the sequence yy.; of past and current array
observations. To this goal, the filter recursively propagates
of the PHD D,;(x) of the ground PPP, while the PHD of
the MPPP intervenes in the observation likelihood function.
Hence, by propagating the PHD D,;(x) on the state-space
R, we avoid the propagation of an equivalent PHD function
on the augmented space R x /C [8]. In the following section
we derive approximate propagation formulas for Dy, (x).

3. APPROXIMATE MPPP PHD FILTER

The filter comprises two stages: prediction (sec. 3.1) and up-
date (sec. 3.2). Target kinematics, as given by eq. (3), in
conjunction with target birth/death processes are employed to
derive an exact formula for the predictive PHD Dy 1(x).
The update stage corrects the predicted intensity with the cur-
rent observation y; ;. Since closed-form formulas are not
available for the updated intensity, an approximation similar
to [7] is proposed.

3.1. MPPP PHD Prediction

The prediction starts with the PHD D,; corresponding to the
posterior density p;;(X) of the ground PPP, eq. (1). The PPP
ground process, describing target locations at time ¢, evolves
due to target birth/death and the kinematics of surviving tar-
gets. The resulting process is shown to be a PPP, with the
PHD function D, ,}; being sufficient for target state infer-
ence.
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Target death (extinction) is modeled by a process of in-
dependent thinning, i.e. targets survive independently of
each other with probability ps(x). The resulting process is
a PPP with intensity and PHD function ps(x)Dy¢(x) [16,
Prop. 3.7]. Targets that survive the thinning process un-
dergo a kinematic transformation modeled by f,1;(x|§) =
N(x; Fi11€,Qy) of eq. (3). The resulting process is again
a PPP [20, Ch. 2.11.1]. Target birth is accounted for by
superposing an independent PPP with intensity ,y; to the
transformed PPP. From the superposition theorem [17, Ch.
2.2], the predicted PHD is given by

Dt+1\t( ) = Yer1(x / ft+1|t X|§)ps( )Dt|t(§)d§ “4)

The associated marked PPP has PHD (or intensity) function:

Diyapi(%)

The propagation of the PHD function Dy, (x) is sufficient for
inferring the target states, while the MPPP PHD occurs in the
array likelihood model. Hence, an efficient particle imple-
mentation propagating only the PHD Dy, (x) is possible.

= Dt+1|t(X)N(S; 0,P) (%)

3.2. MPPP PHD Update
By definition [15, Lemma 5.4.1I1], Dy 441 is given by

Df+1|t+1( ):
Z oy / /pt+1|t+1 {x, w1,y wpt)dwy -
n=0

Or more compactly, by using the set integral representation
[4, eq. 21]

Dt+1\t+1(X) = /pt+1|t+1({x} UW)sw (6)

where we denote W = {wy,--- ,w,}. Applying the Bayes
rule for the posterior p; 1|41 (W), and considering a Poisson
expression (eq. (1)) for pt+1|t(W) we obtain [7]:

Dt+1|t+1(x) = Dt+1|t(x) Lyt+1(x)' (N

The ratio Ly, , , (x) is given by:

S Perr (Ve 1 {xF U W) ppyr o (W)W
S Pe1 (Ve[ W)pegr (W)W

The array likelihood involves target positions and associated
marks (source signals), and can be further written as:

LYt,+1 (X) = (8)

Pe1(yer1|W) =
|W|

/ /pt+1 (ye1 W) HN (si;0, P)ds;, (9)

where W is the MPPP corresponding to the ground PPP .
Both the ground and marked PPP have the same cardinality,
denoted by |TW|. By employing the specific form of the likeli-
hood of eq. (9), the expression of p,1).(WW) given by eq. (1)
and grouping of terms we obtain:

Ly, . (x)=
ST P (Yess = a()s[W)N (530, P)praye (W
fpt+1(Yt+1|AW/)pt+1\t(/W/)6/W/
By employing the change of variables formula proposed in

[21, Prop 4., p.180], that is, denoting z = ZWEW g(w) we
obtain:

L)’t+1 (X) =
J[ N (yi41 — a(x)s; z,071a)p(z)dz N (s; 0, P)ds
SN (yis1:2, 0710 )p(2)dz

Observe that in eq. (10) the set integrals are now reduced to
ordinary integrals, where p(z) is the distribution induced by
the change of variables. As proposed in [7] if we approxi-
mate p(z) ~ N (z, i, 2) with a Gaussian distribution we are
able to obtain an analytic formula for the updated PHD. The
first and second order moments of p(z) are obtainable from
the MPPP predicted distribution pt+1|t(X' ) by means of the
Marking Theorem [17, Ch. 5.3]:

ﬁ*/()wa(Wi

)5st

(10)

// X) Dy (x) sN(s;0, P)dxds =0, (lla)
z—/(@ (%) Dy () o
_p / %) Dy ¢ (x)dx, (11b)

where Dt+1|t(§) is the predicted MPPP PHD given by eq.

(5), and {-}¥ represents the transpose conjugate operator.

The formula for combination of quadratic terms [22, Ap-

pendix 3.8] is employed to solve the denominator and inner

integral of the numerator of the ratio given in eq. (10):

J N (yes1:a(x)s, 021y + NN (50, P)ds
N(yis130,071y +X)

Solving again for the numerator we obtain

N(yi41:0,a(x) Pa (x )+Ut21M‘|‘E)
N(yt+1,0 O'tIM —|—E)

LYt+1 (X) ~

Q

LYt+1 (X)
(12)

4. SIMULATION RESULTS

The final form of the pseudo-likelihood is given in eq. (12),
were Y is given by eq. (11b). This analytic relationship facili-
tates the update of the predictive PHD with eq. (7). Due to the
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PHD [dB] for Marked PPP
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Fig. 1. Logarithm of PHD for proposed filter.

approximation of p(z), the integral of the PHD is no longer a
reliable estimate for the number of targets, and hence a clus-
tering methodology is proposed in [7] that extracts the num-
ber of targets and their state estimates. In [7], this is achieved
by iterating the k—means clustering algorithm for different
numbers of clusters and evaluating the cluster separation with
the silhouette method [23]. However, the silhouettes are only
computable when there are two or more clusters, hence there
isn’t any explicit way of distinguishing when there are less
than two clusters. In fact, the authors in [7] notice the in-
creased error of the method whenever there is only one target
present. Here, we propose to use the DBSCAN clustering al-
gorithm [24], which does not require apriori knowledge of
the number of clusters and considers the existence of parti-
cles not belonging to any cluster, i.e. outliers. This is nec-
essary since a number of particles corresponding to the birth
process 7y, are expected to be dispersed at times when no
actual target is born. Note that the k—means aims to min-
imize the within-cluster sum of squares and hence behaves
poorly in presence of such outliers. A crossing-target sce-
nario is envisaged, with an auxiliary particle filter implemen-
tation of the PHD filter as in [7]. The number of particles
per target is fixed at 1000. The kinematic model in eq. (3) is
employed with v; ~ N (0, Q;) and covariance Q; = G¢?GT
with ¢; = 0.5°/s? representing an acceleration noise [18, Ch.
6.3.1]. Accordingly, G = [TSQ/2, TS]T and T; = 1s repre-
sents the sampling period. PHD prediction is performed with
eq. (4) where the probability of target survival is a constant
ps = 0.9. The intensity ~; for birth location is chosen uni-
form over [—7 /2, /2], while for speed we use N'(0,3). The
whole birth intensity integrates to 0.2. The array consists of
M = 30 receivers and targets are generated with the same

Table 1. Average OSPA error over 1000 Monte Carlo runs.
OSPA error for SNR 5dB | OSPA error for SNR 0dB

Algorithm c=15|c=25|c=5|c=15|c=25|c=5
Proposed PHD | 0.46 0.54 | 0.67 | 0.58 0.69 | 0.87
Method in [25] | 1.07 1.43 2.19 1.53 2.44 4.67

Proposed MPPP PHD PHD of reference [21]
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Fig. 2. DBSCAN clustering results: a) with proposed PHD
filter b) the method in [25]

source signal power, so that SNR = 5d B. PHD update is per-
formed using eq. (7) and the pseudo-likelihood of eq. (12).
The resulting point-mass approximation of the PHD is ob-
servable in Fig. 1, where the logarithm of particle weights is
shown for better visualization. Observe the relatively good fit
of the particle clouds for the three target trajectories. From the
particle approximation of the PHD, target number and state
estimation is performed via DBSCAN clustering. DBSCAN
requires two parameters: the minimum number of particles
of a cluster (set to 50), and the point-neighborhood distance
(set to 1). In Fig. 2-a) clustering of the particle PHD of Fig.
1 is depicted. In Fig. 2-b), results of the method proposed
in [25] for the same simulated scenario and parameters are
depicted. Observe a better adequacy of the proposed PHD
filter, while the method [25] struggles with crossing targets
and short tracks. The method in [25] employs a TWS PHD to
track the peaks of the array signal spectrogram. Thus, when-
ever targets cross only one peak is present in the spectrogram
(one observation) leading to track loss.

A Monte Carlo analysis is carried out over 1000 runs of
the scenario described above at SNR of 5dB and 0dB. The
latter representing a very low SNR scenario in order to test
the proposed TBD filter. The optimal subpattern assignment
(OSPA) [26] error metric is employed to quantify the differ-
ences between the estimated target set and ground truth set.
Results are synthesized in Table 1 and showcase the superior-
ity of the proposed TBD filter even at very low SNR.

5. CONCLUSIONS

A TBD filter is proposed for DOA tracking based on the su-
perpositional PHD filter. An efficient particle filter implemen-
tation is achieved by analytically integrating the source sig-
nals in the update step. Tracking of multiple crossing targets
is showcased and a Monte Carlo simulation is performed. Re-
sults for low SNR scenarios demonstrate the robustness of our
proposed method, as compared to state-of-the-art methods.
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