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ABSTRACT

A network of microphone pairs is utilized for the joint task

of localizing and separating multiple concurrent speakers.

The recently presented incremental distributed expectation-

maximization (IDEM) is addressing the first task, namely de-

tection and localization. Here we extend this algorithm to

address the second task, namely blindly separating the speech

sources. We show that the proposed algorithm, denoted dis-

tributed algorithm for localization and separation (DALAS),

is capable of separating speakers in reverberant enclosure

without a priori information on their number and locations.

In the first stage of the proposed algorithm, the IDEM algo-

rithm is applied for blindly detecting the active sources and

to estimate their locations. In the second stage, the location

estimates are utilized for selecting the most useful node of mi-

crophones for the subsequent separation stage. Separation is

finally obtained by utilizing the hidden variables of the IDEM

algorithm to construct masks for each source in the relevant

node.

Index Terms— Wireless acoustic sensor network; blind

source separation; incremental estimate-maximize

1. INTRODUCTION

Blind source separation (BSS) is an unsupervised technique

for recovering the underling sources from a set of their mix-

tures. In acoustic applications [1], as the cocktail party prob-

lem [2,3], the sources (speakers) are typically mixed in a con-

volutive manner, and the respective source separation task is

referred to as convolutive BSS. The convolutive BSS prob-

lem is much more challenging compared with the instanta-

neous BSS, since the separation filters might have thousands

of coefficients in a typical room environment. The instanta-

neous BSS framework can still be used for convolutive mix-

ture separation in the frequency domain [4]. However, once

the frequency domain approach is used, the inherent scaling

and permutation ambiguity of BSS methods [5] will be inde-

pendently encountered in each frequency band. This ambigu-

ity has to be resolved for obtaining meaningful separation.

Additional difficulty may arise in audio applications in the

under-determined case (i.e. the number of sources is greater

than the number of sensors). In this case, linear separation

scheme will fail to separate the sources. However, this sce-

nario is still trackable, if the sources have a sparse representa-

tion [6]. Audio sources (such as speech and music) are often

attributed by a sparse representation in the short-time Fourier

transform (STFT) domain [7]. The sparseness of the speech

in the time-frequency (T-F) domain attracted significant at-

tention in the speech processing community in general, and

in source separation community in particular [8–10]. Source

separation in the T-F domain is achieved by clustering the T-F

bins into groups, each group associated with one source sig-

nal. The clustering usually relies on features such as time

difference of arrival (TDOA) [7, 11, 12].

We establish our BSS scheme on a 2-D (or a 3-D) lo-

calization procedure. The distributed localization algorithm

provides reliable information regarding the sources in the

room, even when the node signals are contaminated by mod-

erate level of reverberation and interference. A modified ver-

sion of the incremental distributed expectation-maximization

(IDEM) algorithm [13] efficiently converges to the global
maximum likelihood (ML) of the localization problem. The

IDEM belongs to the distributed expectation maximization

(DEM) group of algorithms, term coined by Nowak [14]. The

IDEM is implemented over a directed-ring. It combines a new

definition of hidden variables incorporated into the incremen-

tal EM (IEM) framework [15–17]. In this paper1 we propose

to utilize the reliable localization estimates for separating the

sources, by first selecting the best receiving node per source

and then applying the corresponding spectral masks deduced

from the hidden variables of the IDEM algorithm. Using the

source location estimates, masked signals at the same node

are time-aligned and averaged to obtain the final separated

signals.

The reminder of this paper is organized as follows. A brief

description of the IDEM is given in Section 2. In Section 3

we present the DALAS for speaker separation in reverberant

environments. Section 4 is dedicated to simulation results.

Conclusions are drawn in Section 5.

1We would like to thank Dr. Gershon Hazan for his dedicated assistance

and support.
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2. THE IDEM ALGORITHM

In [13] the first version of IDEM has been presented for local-

ization. This section presents a modified version, which refers

to a new set of hidden variables. First, a reminder of the local-

ization problem is given. Then, a simplified definition of the

hidden variables is presented. These hidden variables, which

are actually a byproduct of the localization procedure, will be

used in the derivation of the BSS algorithm. The algorithm

is implemented over a directed-ring consisting of M nodes.

Each node of the network consists of a microphone pair, a

CPU and a communication unit. The global parameters are

transmitted around the ring from one node to another. Each

node updates its local hidden and transmits the maximization

result to the next node.

2.1. maximum likelihood for localization - A reminder

The localization procedure starts with a pair-wise relative

phase ratio (PRP) extraction:

φm(t, k) � z2m(t, k)|z1m(t, k)|
z1m(t, k)|z2m(t, k)| , ∀m = 1, . . . ,M, (1)

where zrm(t, k) is the STFT of the rth microphone signal (r =
1, 2) at the mth node. The time and frequency indices are

t = 1, . . . , T and k = 0, . . . ,K − 1, respectively.

These PRPs are induced by the TDOA τm(p) �
||p−p2

m||−||p−p1
m||

c of an acoustic source located in location

p, where p1
m and p2

m are the microphones locations of pair

m, || · || denotes the Euclidian norm, and c is the sound veloc-

ity.

We model the PRPs using a Gaussian mixture model

(GMM):

φm(t, k) ∼
∑
p

ψpN c
(
φm(t, k); φ̃k

m(p), σ2
)
, (2)

where ψp is the probability that the speaker emitting in bin

(t, k) is located at position p. N c(·; ·, ·) denotes the complex

Gaussian probability density function (p.d.f.) with variance

σ2. The variance value is fixed and chosen empirically. The

mean of each Gaussian can be calculated in advance on a grid

of all possible locations:

φ̃k
m(p) � exp

(
−j

2πkτm(p)

KTs

)
, ∀p ∈ P, (3)

where Ts denotes the sampling period and P being the set of

all possible locations.

The joint p.d.f. of the PRP readings, assuming indepen-

dency is given by:

f(Φ = φ;ψ) =
∏
m,t,k

∑
p

ψpN c
(
φm(t, k); φ̃k

m(p), σ2
)
,

(4)

where ψ = vecp (ψp) and φ = vecm,t,k (φm(t, k)).

The ML estimate of the source locations is:

ψ̂ = argmax
ψ

[log f(Φ = φ;ψ)

s.t.
∑
p∈P

ψp = 1 and 0 < ψp < 1]. (5)

2.2. Local hidden variables

The hidden variables of the IDEM algorithm are local, de-

fined as the per-node association of each time-frequency bin

with a source at position p, and are denoted ym(t, k,p). The

main modification from [13] is the direct dependency of the

local hidden variables on the source position, rather than the

associated TDOA. Let y = vecm,t,k,p (ym(t, k,p)) be the

vectorial notation of the hidden variables. The p.d.f. of y is

given by:

f(Y = y;ψ) =
∏
m,t,k

∑
p

ψpym (t, k,p) . (6)

Given the hidden variables, the p.d.f. of the observations is:

f(Φ = φ|y;ψ) =
∏
m,t,k

∑
p

ym (t, k,p)

×N c
(
φm(t, k); φ̃k

m(p), σ2
)
. (7)

The p.d.f. of the complete data can be deduced from (6)-(7):

f(Φ = φ,Y = y;ψ) =
∏
m,t,k

∑
p

ψpym (t, k,p)

×N c
(
φm(t, k), φ̃k

m (p) , σ2
)
. (8)

These hidden variables, besides their role in the localization

algorithm, can be utilized to construct spectral masks, as dis-

cussed in the next section.

2.3. The modified IDEM algorithm

The IDEM algorithm is based on the partial (also denoted

IEM) procedure [15]. It consists of partial E-step updates at

each node followed by an M-step. In this way, components of

the hidden vector are estimated incrementally with the most

updated values of the parameters. The IDEM is updating the

hidden variables node-by-node as new data is available.

The IEM is advantageous to the conventional expectation-

maximization (EM) algorithm in two important aspects,

namely significantly improved convergence speed [15, 17],

and weaker dependency on initialization [16, 17]. The pro-

posed distributed method is implemented over a directed ring

topology. The resulting algorithm is capable of detecting the

number of active sources (including the detection of no activ-

ity) and their locations.
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Algorithm 1: IDEM localization (1st stage).

input z1m(t, k), z2m(t, k); ∀m.

Calculate φm(t, k) using (1).

set φ̃k
m(p) using (3).

init ψ̂(−M)
p , . . . , ψ̂

(−1)
p to uniform p.d.f..

Calculate υ
(−M+1)
m (t, k,p) , . . . , υ

(0)
m (t, k,p) using (10).

Calculate their mean: ψ̂
(0)
p =

∑
m,t,k υ(m−M)

m (t,k,p)

M ·T ·K .

for � = 1 to L do
for m = 1 to M do

i = (�− 1)M +m (partial iteration index).

E-step
Calculate υ

(i)
m (t, k,p) using (10).

M-step
Calculate

ψ̂
(i)
p = ψ̂

(i−1)
p +

∑
t,k υ(i)

m (t,k,p)−υ(i−M)
m (t,k,p)

M ·T ·K .

end
end
output ψ̂(LM)

p , υ
(LM)
m (t, k,p).

The E-step can be stated as:

Q(ψ|ψ̂(i−1)
) � E

{
log (f(Φ = φ,Y = y;ψ)) |φ; ψ̂(i−1)

}
(9)

=
∑

m,t,k,p

E
{
ym(t, k,p)|φm(t, k); ψ̂

(i−1)
}
·

[
logψp + logN c(φm(t, k); φ̃k

m(p), σ2)
]
,

which in our case, simplifies to the calculation of:

υ(i)
m (t, k,p) � E

{
ym (t, k,p) |φm(t, k); ψ̂

(i−1)
}

(10)

=
ψ̂
(i−1)
p N c

(
φm(t, k); φ̃k

m (p) , σ2
)

∑
p′ ψ̂

(i−1)
p′ N c

(
φm(t, k); φ̃k

m (p′) , σ2
) .

The IDEM applies a local (partial) E-step, followed by a

global M-step (implemented incrementally), as summarized

in Algorithm 1.

3. DISTRIBUTED ALGORITHM FOR
LOCALIZATION AND SEPARATION (DALAS)

This section presents the distributed algorithm for localiza-

tion and separation (DALAS). First, we deal with the detec-

tion problem, i.e. determining the number of active sources.

Then, we describe the utilization of the location information

to choose the best node for extracting each source. For each

source we construct a spectral mask. This mask and the global

localization information are utilized for node level filtering.

3.1. Number and locations of active sources

Unlike many approaches for BSS, we do not assume any a

priori knowledge regarding the existence of sources and their

number. The first parameter, estimated from the IDEM out-

puts, is the number of active sources in the enclosure.

For that, we first obtain I(p), a location binary map, ob-

tained by applying a threshold to the GMM weights

I(p) =

{
1, ψ̂

(L·M)
p > Thr

0, else
, (11)

where Thr is an empirically tuned threshold.

The number of active sources is estimated by aggregating

the number of active locations:

N̂ =
∑
p∈P

I(p). (12)

The location estimates are denoted p̂n, n = 1, . . . , N̂ .

3.2. Best node for each source

The next task of DALAS is to choose (for each speaker) the

best receiving node. Selecting the best node is a cumbersome

task. Here we proposed a simple solution:

m0(n) = argmin
m(n),r

[||p̂n − pr
m||], (13)

which selects the node with the closest microphone. This mi-

crophone is assumed to have the best input signal to noise

ratio (SNR). This mechanism does not require high commu-

nication bandwidth (BW) and computational complexity. The

detailed protocol for choosing the best node is out of the scope

of this contribution.

3.3. Spectral masks

Source separation is obtained by utilizing spectral masking.

Soft masking reduces the musical noise phenomenon. We

propose to apply the following combination of soft and hard

mask by thresholding the estimated local indicators:

Cn
m(t, k) =

⎧⎪⎨
⎪⎩
1, υ

(L·M)
m (t, k, p̂n) > TH

0, υ
(L·M)
m (t, k, p̂n) < TL

υ
(L·M)
m (t, k, p̂n) , otherwise

,

(14)

where TH and TL are the high and the low thresholds, re-

spectively. Their selection is a tradeoff between decreasing

interference power and maintaining desired spectral contents.
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Fig. 1: Filtering at the mth microphone pair.

3.4. Node level filtering

The masking, summarized in a block-diagram depicted in

Fig. 1, is applied at the best node of each source. The node

signals zrm(t, k) are masked by multiplying their STFT by the

mask in (14), a value in the range [0, 1]. Although applied lo-

cally, the location estimates are using the global information

(through the control mechanism), hence potentially improv-

ing the credibility of the mask.

The masked signals, ŝr,nm (t, k), for speaker n at micro-

phones r = 1, 2 of node m are transformed back to the time

domain using inverse short-time Fourier transform (ISTFT)

and then aligned (sub-sample delay applied) and averaged:

ŝnm(t) =
1

2

2∑
r=1

ŝr,nm (t− t̂r,nm ), (15)

where t̂r,nm =
||p̂n−pr

m||
c is the delay between the location of

source n and the microphones of node m, and t is the time

index. This alignment can be either implemented in the time-

domain or in the frequency-domain. The result of (15) is a

signal with an enhanced direct path.

3.5. Summary of DALAS

The stages of the proposed DALAS flow can now be sum-

marized as described in Algorithm 2. The signals received by

the microphones are used to execute the first stage of the algo-

rithm, namely the IDEM algorithm. The number of sources

and their locations are the outcomes of the first stage. The

network chooses for each source the best node, which will be

responsible for extracting its signals from the received mix-

ture. Spectral masks (14) are applied in the STFT domain.

The masked signals are aligned and averaged to improve SNR

and to reduce artifacts.

4. SIMULATION STUDY AND PERFORMANCE
MEASURES

4.1. Simulation setup

To evaluate the performance of the algorithms, we have sim-

ulated the following scenario. Twelve pairs (nodes) of om-

nidirectional microphones were located around the room at

Algorithm 2: The DALAS flow.

input z1m(t, k), z2m(t, k); ∀m.

1st stage
Execute IDEM to produce ψ̂

(L·M)
p , υ

(L·M)
m (t, k,p).

2nd stage
Estimate N̂ using (12).

for n = 1 to N̂ do
Choose the best node, m0(n) using (13).

for r = 1 to 2 do
Apply masking using (14).

Apply ISTFT.

end
Align masked signals and average using (15).

output ŝnm(t).

end
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Fig. 2: Network constellation and Localization results for

close distant.

the same height of 150 cm. The distance between the mi-

crophones of each pair was 50 cm as used in [13]. The di-

mensions of the simulated room were 6 × 6 × 4 m, with low

reverberation level of T60 = 150 msec. Two sources, ran-

domly located in the room at the same height as the sensors,

uttered speech signals of 4 sec.

The following parameters, influencing the algorithm’s per-

formance, were empirically chosen to σ2 = 0.04, Thr = 0.1
and L = 4. Since the localization results are quite sharp,

the dependency on Thr is rather weak. The values of the

masking thresholds were: TL = 0.2 and TH = 0.35. The

STFT used a rectangular window and 75% overlap. The fil-

tering part of the DALAS is examined by signal to interfer-

ence ratio (SIR) measure for the input and the output signals:

SIRn = 10 log
(

En
∑

ñ �=n Eñ

)
dB, where En is the nth source

power.

4.2. Results

Two examples of two concurrent sources, a man and a

woman, are presented. In the first scenario the distance be-

tween the sources is rather large. In this case, based on the

localization results, the algorithm selected the 1st node as the

best node for extracting the woman and the 11th node as the
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Distant Close

Man Woman Man Woman

SIRi 9 14 -1 4

SIRo 19 17 19 20

Table 1: Separation measures for two sources in two cases

best node for extracting the man. This selection results in high

input SIR and hence potentially improves the output separa-

tion quality. The measures are summarized in Table 1.

The second example is more challenging. The sources are

very close to each other and located in the bottom left corner

of the room. The localization results are depicted in Fig. 2. In

this case, the algorithm selected the 4th node as the best node

for separating the man and the 1st node as the best node for

separating the woman. In this case the input SIR is low, since

the sources are very close to each other. However, the algo-

rithm is still capable of separating the sources and improving

the SIRs significantly as evident from Table 1.

5. CONCLUSIONS

In this paper we presented the DALAS, a new separation al-

gorithm based on the IDEM concept for localization. The dis-

tributed architecture is utilized to efficiently carry out various

tasks. First, the number of active sources and their locations

are estimated. Based on the location estimates, the best node

for separation is selected. A byproduct of the IDEM, namely

its hidden variables, is used to construct spectral masks. The

estimated source locations also enable coherent averaging of

the node’s signals received by different microphones. Encour-

aging simulation results demonstrate the potential of the algo-

rithm to blindly separate sources even in close proximity.
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