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ABSTRACT

We present a new classifier for acoustic time-series that in-

volves a mixture of generative models. Each model oper-

ates on a feature stream extracted from the time-series using

overlappedHanning-weighted segments and has a probability

density function (PDF) modeled with a hiddenMarkovmodel

(HMM). The models use a variety of segmentation sizes and

feature extraction methods, yet can be combined at a higher

level using a mixture PDF thanks to the PDF projection the-

orem (PPT) that converts the feature PDF to raw time-series

PDFs. The effectiveness of the method is shown using an

open data set of short-duration acoustic signals.

Index Terms— Classification, PDF projection, genera-

tive models, kernel methods

1. BACKGROUND

It has been recognized that audio scene classification repre-

sents a challenge for feature design [1–4]. If there are a large

variety of signal types, it requires a large variety of feature ex-

tractors. Existing methods continue to apply a single feature

set at a time, a practice that leads to the the dimensionality

curse or feature bottleneck. We have previously proposed a

theoretical approach to use several feature sets simultaneously

in a Bayesian framework, without incurring the dimension-

ality curse [5–7]. These methods are all based on the PDF

projection theorem (PPT), which we review below. In this

paper, we propose additional innovations including Hanning-

3 segmentation, class-specific model mixtures with anneal-

ing factor to arrive at a general purpose classifier for acoustic

time-series.

1.1. PDF Projection

PDF projection can circumvent the feature bottleneck to bring

more information to bear on the problem without increasing

feature dimension [6,8]. Consider any feature transformation

z = T (x), x ∈ RN , z ∈ RD, D < N. (1)

Consider a canonical statistical reference hypothesis H0 un-

der which the exact PDF of both x and z are known. In this

paper, we use the hypothesis H0 : x consists of independent

Gaussian zero mean variance 1 noise (IGN). Define

G(x; T, H0) =
p(x|H0)

p(z|H0)
g(z) = J(x; T, H0) g(z), (2)

where g(z) is any feature PDF, and J(x; T, H0) = p(x|H0)
p(z|H0) is

called the “J-function” because of the analog with the Jaco-

bian for an invertible transformation. The PPT [6] proves that

G(x; T, H0) is a PDF (integrates to 1 over x) and is a member

of the class of PDFs that generate g(z) 1.

The main difficulty in applying the PPT is the need to

compute J(x; T, H0) precicely. The most difficult part is the

evaluation of p(z|H0), even in the tails. Most if not all in-

put data samples will be in the far tails of the reference hy-

pothesis, where p(x|H0) and p(z|H0) are both essentially

zero. Luckily, the ratio p(x|H0)/p(z|H0) can be computed

with high precision in the log-domain, often without comput-

ing the individual numerator and denominators. For canon-

ical p(x|H0) (Gaussian and exponential), p(z|H0) has been

solved for many important feature transformations [9]. We

will see later in Section 1.3 that if the feature transformation

can be broken into simple stages, the J-function for complex

feature transformations can be computed easily.

In addition to making possible classifiers with mixed fea-

ture sets, the PPT can be used to solve two different opti-

mality problems. First, it provides a quantitative means of

feature optimization if we have a large set of data samples.

Given K samples of data x, the total log-likelihood mea-

sure L(T, H0) =
∑K

k=1 log G(xk, T, H0) can be used to se-

lect feature transformations T and reference hypotheses H0

by maximum likelihood. Care must be exercised to separate

training and testing data for meaningful results.

Secondly, it has been recently shown that (2) is the maxi-

mum entropy PDF that generates g(z). This requires that the
feature contain information about the size (norm) of x [10].

This means that G(x) represents the best expression of the

knowledge of x given the feature density g(z).

1The PDF G(x) is said to generate feature PDF g(z) if random samples

of G(x) passed through the feature transformation z = T (x) have exactly

distribution g(z).
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1.2. Using the PPT in a classifier

Let zk = Tk(x) be class-specific feature transformations. If

we use (2) g(z) = p(zk|Hk), we may form the Bayesian clas-

sifier

k̂ = arg max
k

{Jk(x; Tk, H0,k) p(zk|Hk) p(Hk)} , (3)

where H0,k are class-specific reference hypotheses. This

Bayesian classifier is defined on the raw data using different

feature sets for each class hypothesis.

The main problem with the class-specific features formu-

lation is the one-class/one-feature assumption. Real data from

a given class exhibits diversity that can span several feature

sets. This problem is solved by the class-specific feature mix-

ture (CSFM) classifier

k̂ = arg max
k

{

L
∑

l=1

αk,l Jl(x; Tl, H0,l) p(zl|Hk,l)

}

p(Hk).

(4)

The PDF for each class is a kernel mixture made from the

projected PDFs of a fixed library ofL feature transformations.

1.3. The Chain Rule

We already discussed the potential difficulty in computing

J(x). The Chain-rule [6] makes this task for multi-stage fea-

ture extraction much easier. Consider the three-stage trans-

formation y = Ty(x), w = Tw(y), zk = Tz(w). This
suggests the chain-rule form of (2),

G(x)=

[

p(x|H0x)

p(y|H0x)

] [

p(y|H0y)

p(w|H0y)

] [

p(w|H0w)

p(z|H0w)

]

g(z), (5)

where H0x, H0y, H0w are stage-dependent hypotheses.

The use of stage-dependent hypotheses is extremely use-

ful. To see why, consider what would happen if we used a

common reference hypothesis throughout the chain. As we

go down the chain, the assumption that x has PDF p(x|H0)
would result in feature distributions that were progressively

more difficult to derive. At some point, it could be impossi-

ble to come up with an exact expression for the distribution

of the final feature p(z|H0). With stage-specific reference

hypotheses, we can get a “fresh start” at the input of each

stage, assuming a simple canonical form for the distribution

at the input of the stage such as Gaussian or exponential dis-

tributions, then needing only to derive (or look up) the feature

distribution at the output of each stage.

2. TECHNICAL APPROACH

2.1. Classifier Architecture

We base our classifier on CSFM. Figure 1 shows the means

of implementing (4) for a single class k. In each of the L

branches, we used hanning-3 segmentation (see Sec. 2.2) fol-

lowed by feature extraction (see Sec. 2.3). The L feature

likelihood functions in branch l, log p(Zl|Hk,l), are computed

using an HMM. Each branch uses a potentially different data

segmentation size, feature type and dimension. The HMM

mixture at the output implements CSFM using (4) or (6). We

used flat model weights (αk,l = 1/L).

2.2. Data Segmentation

Let the input data x be broken into a sequence of time seg-

ments, which are individually passed through a feature ex-

traction processor, producing a stream of features Z. The

feature transformation Z = T (x) encompasses both the data

segmentation and feature extraction. In the past, we have

used only block segmentation with class-specific models be-

cause it results in independent segments and simplifies the

calculation of p(x|H0) and p(z|H0) [8]. We have recently

discovered a means to circumvent the requirement of inde-

pendent segments [11]. Consider overlapped segments with

segment size K and window time shift S, overlapping by

O = K − S samples. If we circularly-index the data such

that xN+i = xi, we will obtain exactly T = N/S seg-

ments. Let xi = [x1+Siw1, x2+Siw2, . . . xK+SiwK ], be the
i-th segment where wi are the Hanning weights2. Let the

complete hanning-3 segmentation be denoted by X2/3 =
[x1,x2 . . .xT ]. Note that X2/3 is K × T = (3S) × (N/S),
so has a total dimension of 3N .

To use various hanning-3 segmentations together in a

class-specific classifier, we need to apply the concept of vir-

tual input data. Consider two hanning-3 segmentations with

different segment sizes Kl and Km, denoted by Xl,2/3 and

Xm,2/3. It has been shown [11] that with weights wi as

defined in [11], that Xl,2/3 and Xm,2/3 are related by an

orthogonal linear transformation. Specifically, there exists

an ortho-normal matrix U such that Xl,2/3 = U Xm,2/3. In
Figure 1, the output of each segmentation operation is consid-

ered as the “virtual input data” of each branch. Each branch

has a different virtual input data, but they are considered

“equivalent”. Therefore, the projected likelihood function

for Xl,2/3 may be compared to the projected the likelihood

function for Xm,2/3.

2.3. Features and J-function

We used both auto-regressive (AR) and cepstrum features

in the experiments. AR features, widely used in speech and

time-series analysis [12], start with discrete Fourier transform

(DFT), then magnitude squared, inverse DFT to compute the

auto-correlation function (ACF), Levinson algorithm to com-

pute the reflection coefficients (RC) and innovation variance,

and log-bilinear transformation to provide an approximate

2these must be periodic with a period of N , not N−1 as is typically used

to avoid any zero weights
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Fig. 1. Architecture of HMM model mixture for class k (mixture of 3 models).

Gaussian distribution for the RC. This process including

computation of the J-function is described in ( [8] Section

VIII).

The Cepstral features were inspired by the MEL fre-

quency cepstral coefficients (MFCC) widely used in speech

analysis [13]. In addition to MEL band spacing, we used

linear band spacing (LFCC). For LFCC and MFCC features,

we compute the inner product of the raw spectral vector and

each band function. The discrete cosine transform (DCT) of

the log of the band energies is then computed. In contrast

to the usual approach in speech analysis, the DCT output is

not truncated, so the final feature dimension is equal to the

number of band functions. We used zero and Nyquist bands

in order that the total spectral energy is computed. The J-

function calculation for LFCC/MFCC is the same as the AR

features ( [8] Section VIII) , except the inner product of the

raw spectrum with the MEL band functions replaces the co-

sine functions needed to compute the ACF. The log and DCT

are 1:1 transformations, so require only Jacobian analysis.

3. RESULTS - OFFICE SOUNDS DATA

3.1. Data description

The Office Sounds database [14] contains twenty-four signal

classes of 102 samples each, a total of 2448 example sounds,

mostly created by dropping common objects or operating of-

fice tools such as scissors or staplers. All time-series are

16128 samples long (1/2 second in duration at 32000 Hz).

Due to the fixed data length, the data base is ideal for compar-

ing generative classifiers with general-purpose discriminative

classifiers. The sounds are consistently generated, thus sepa-

rable, but having many similar characteristics.

3.2. Benchmark Performance: SVM

For a performance benchmark, we applied the support vector

machine (SVM) classifier “SVM-Light” toolkit [15]. Several

feature extraction methods were tried including spectrogram

and MFCC features, but the best SVM performance was ob-

tained with a straight DFT and principal component analysis

(PCA). The full time-series was transformed directly by the

DFT, then the log of the magnitude of each bin was calculated.

All the training set features were gathered and PCA analysis

was done, keeping the top 128 principal vectors. For classifi-

cation, the features were projected onto the 128-dimensional

basis, producing a 128-dimensional feature that was provided

to the SVM using linear kernel. Twenty-four one-against-all

SVM classifiers were trained, then samples were classified by

choosing the model with the highest output. Classification

error was 3.15% (77/2448) at 2:1 holdout.

3.3. Individual Models

We used a total of 23 models consisting of 16 Cepstrum (8

LFCC and 8 MFCC) and 7 AR models (See section 2.3). The

parameters for Cepstrum features and the model order for AR

features as a function of segment size is shown in Table 1.

It is instructive to compare the various models individ-

ually, both in terms of classification performance, and in

terms of total projected likelihood L(T, H0). Total projected
likelihood was computed individually for each class using

2:1 holdout, then averaged over the 24 classes. We plotted

this value as a function of the model index for 23 models.

We also measured individual classification performance on

the 23 models. Figure 2 shows the result using 2:1 holdout.

There is an approximate inverse relationship between classifi-

cation error and total projected log-likelihood, demonstrating

the feasibility of feature selection based on projected likeli-
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Cepstrum AR

LFCC MFCC

K Bands model model order model

72 6 1 9 3 17

96 8 2 10 4 18

144 12 3 11 6 19

192 16 4 12 7 20

288 24 5 13 11 21

384 32 6 14 16 22

576 48 7 15 20 23

768 64 8 16

Table 1. Model parameters for Cepstrum and AR models.

Model numbers correspond with model numbers used in Fig-

ure 2 and 3

hood. This method is unique and has no comparable known

technique in the classification and machine learning literature

where it is generally accepted that likelihood comparison

between different features is meaningless.
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Fig. 2. Classification error probability (triangles) and total

likelihood (circles) for 23 models: 8 LFCC models, 8 MFCC

models, and 7 AR models, 2:1 holdout. Minimum error is

0.34% for model 14 which is MFCC at K = 384.

3.4. Classification results: model mixture

Up to now we have tested feature sets individually for clas-

sification error, using individual branches in Figure 1. The

CEPSTRUM features with Hanning-3 processing achieves an

impressive 0.34% error at 2:1 holdout. We would like to see,

however, if combining multiple features achieves even lower

error.

To promote better model mixing, we used a method re-

lated to simulated annealing (SA), which is used in statistical

modeling and optimization [16]. The annealing factor C ap-

plied to (4) produces the classifier

k̂ = arg
M

max
k=1

{

L
∑

l=1

αk,l [Jl(X) p(Zl|Hk,l)]
1/C

}

p(Hk),

(6)

In SA, the factor C is gradually reduced as the model is

trained, however, we use a fixed C. Equation (6) is also a

form of alpha-integration [17]. Large C equates to a geo-

metric PDF mixture, while small C selects the largest model

(infinity norm), and C = 1 gives linear mixing. We de-

termined the error performance of (6) as a function of the

log-annealing factor l, where C = Nel, where N is the num-

ber of samples in the time-series. This was done so that the

optimal value of l would be roughly independent of N .

The error rate as a function of annealing factor l is shown
in Figure 3 for 2:1 holdout. The figure shows the performance

for a mixture of all 23 models and a mixture with a selected 4

models. Both curves show best perfoamance around l = −3.
Clearly, selecting a subset of the models can work better than

using all of them. Although using all models was not as good

as the single best model (0.34%), it does suggest a very good

general-purpose classifier if the best model is not known. The

performance of the selected 4 models was better than the best

individual model, achieving 0.15% error (99.85% correct), or

just 3 errors in 2448 opportunities. The fact that selected mod-

els works better suggests that unequal mixing weights may

also achieve better performance (we used flat mixing weights

in the experiments, αk,l = 1/L).
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Fig. 3. Classification error as a function of annealing factor l
for 16 Cepstrum models (top) and selected models 7,14,17,18

(bottom).

3.5. Discussion of Results

In Figures 2 and 3, we see some important results. First, be-

cause the highest likelihood generally coincides with mini-

mum error, figure 2 implies that using the PPT, the model or-

der (number of band functions) may be selected based on in-
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dividual models, not by classification performance, as is typ-

ically done. This makes a classifier more generalizable since

its design is less dependent on other classes. Figure 3 shows

that the PPT allows combining generative classifiers in a new

way. On the right side of the graph, (high l, and therefore

high C), the performance approaches that of log-likelihood

addition, or a geometric mixture of the models. This is the

equivalent to adding or stacking models, as is often done in

practice. The problem with stacking is that all models have

equal influence regardless of how well a model represents a

given data sample. This can be thought of as over-mixing.

On the left (low C), the performance approaches the classi-

fier that selects the model with the highest likelihood, what

be thought of as under-mixing because only the one model

has an influence on the likelihood function. The center of the

graph is the region of goodmodel mixing, showing a resultant

better performance.

4. CONCLUSIONS AND FUTUREWORK

We presented a classification scheme using a mixture of fea-

ture models based on PDF projection. Each feature model can

have a different feature type, model order, and/or segmenta-

tion size. The mixture relies on the PDF projection theorem

(PPT) to convert feature PDFs to raw-data PDFs. Likelihood

annealing was used to promote better mixing of the models,

with optimal performance at medium annealing factor. We

demonstrated the method using autoregressive (AR) and cep-

strum features having both MEL (MFCC) and linear (LFCC)

band spacing. On the Office Sounds Data, using a mixture of

23 different models, the method had a minimum error at mod-

erate annealing factor that was comparable but not better than

the best individual model. With a set of four selected models,

the mixture performed significantly better than the best single

model. The performance of our classifier was significantly

better (a factor of between 7 and 20 times better) than the best

performance obtained using a support vector machine (SVM).
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