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ABSTRACT
Envelope models are common in speech and audio process-
ing: for example, linear prediction is used for modeling the
spectral envelope of speech, whereas audio coders use scale
factor bands for perceptual masking models. In this work
we introduce an envelope model called distribution quan-
tizer (DQ), with the objective of combining the accuracy of
linear prediction and the flexibility of scale factor bands. We
evaluate the performance of envelope models with respect to
their ability to reduce entropy as well as their correlation to
the original signal magnitude. The experiments show that
in terms of entropy, distribution quantization and linear pre-
diction are comparable, whereas for correlation, distribution
quantization is better. Furthermore the coefficients of distri-
bution quantization are independent and thus more flexible
and easier to quantize than linear predictive coefficients.

Index Terms— Speech coding, linear predictive coding,
signal modeling

1. INTRODUCTION

Modern multimedia devices all come shipped with a variety
of speech and audio applications, with features ranging from
music transmission, speech coding and enhancement to spa-
tial audio reproduction. A common feature of many of these
algorithms is that they use envelope models to describe the
signal or its characteristics. We define an envelope as a con-
tinuous, usually smooth shape describing a characteristic of
the signal. Figure 1 illustrates an envelope model generated
for the spectrum of a speech signal. This paper focuses on
spectral envelopes, but results can readily be extended to other
domains.

A typical envelope model is linear prediction [1], which
is in speech coding used to model the spectral envelope of
a signal (see section 2.1). The model residual can then be
encoded with a lower number of bits than the original sig-
nal. This approach is used in main-stream speech codecs
such as AMR-WB, MPEG USAC and 3GPP Enhanced Voice
Services [2–4]. Several improvements have been applied to
linear prediction over time, but generally their complexity
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Fig. 1: Illustration of how an envelope (thick line) models the
overall shape of the spectrum of a signal (thin line).

in implementation, quantization and coding is higher than in
normal linear prediction [5–7]. Therefore in this work we
only consider the basic form of linear prediction as described
in [1].

On the other hand, audio coders such as MP3, AAC and
MPEG USAC use scale factor bands (see section 2.2) to
model the perceptual masking envelope [3, 8, 9]. The same
model is also used in bandwidth extension, which is imple-
mented in newer codecs such as AAC and MPEG USAC [10].
This method efficiently encodes high-frequency regions by
replicating spectral fine structure from lower bands and shap-
ing them by an envelope function.

Another application of envelopes is temporal noise shap-
ing (TNS) [11]. It addresses temporal pre-echo effects caused
by quantization noise of transient events such as clicks. By
modeling the temporal envelope by a frequency domain lin-
ear predictor, TNS can attenuate such temporal smearing.

Our long-term objective is to develop envelope mod-
els which would cover all above applications. This work
introduces an envelope model called distribution quantizer
(DQ) [12], which provides a balance between the accuracy of
linear prediction and the flexibility of scale factor bands (see
section 3). The approach is based on describing the distribu-
tion of spectral mass by dividing the spectrum into blocks of
equal magnitude.

To evaluate the performance of envelope models we use
two measures. Firstly, we calculate entropy which corre-
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sponds to the number of bits needed to transmit the remaining
signal. Secondly, we use correlation between the envelope
and the input which corresponds to calculating the signal to
noise ratio (SNR) of an envelope which is scaled optimally.

The experiments show that the entropy and thus coding
efficiency of distribution quantizer is very close to linear pre-
diction. Furthermore distribution quantizer correlates better
with the input signal than linear prediction does. These results
make the distribution quantizer an attractive candidate for
flexible and efficient modeling of envelopes in applications
which have used linear prediction or scale factors in the past.

2. ENVELOPE MODELS

Consider a sequence of N samples Xk with 1 ≤ k ≤ N ,
modeled by an envelope with P degrees of freedom, or equiv-
alently, where model order is P . When we apply the model to
the signal we get for eachXk an envelope value Ek as well as
a residual Rk that describes the error between signal and en-
velope. In our work we look at spectral envelopes and define
a multiplicative relation to the signal magnitude in frequency
domain such that

Xk = EkRk, (1)

where Xk is the spectral mass of the original signal, Ek is
the envelope and Rk the residual. Each envelope algorithm
models the signal by its own samples Ek using P algorithm-
specific parameters.

2.1. Linear Prediction

Linear prediction (LP) is used by many speech coding algo-
rithms based on code-excited linear prediction (CELP) [1,13].
It models the input signal ξn as a sum of previous samples
weighted with the model parameters αLP,p. With αLP,1 = 1
the residual εn can be solved as a convolution:

ξn = −
P∑

p=1

αLP,pξn−p + εn ⇒ εn =

P∑
p=0

αLP,pξn−p (2)

Generally, the coefficients αLP,p are chosen so as to minimize
the mean square error [1]. To compose the spectral envelope,
we convert ξn and αLP,p into frequency domain and get Xk

and ALP,k respectively. According to equations 1 and 2 the
definition of the spectral envelope Ek is then

Xk = ELP,k ALP,k Xk ⇒ ELP,k =
1

ALP,k
. (3)

2.2. Scale factors bands

The idea of scale factor bands (SFB) is to split the spectrum
into a predefined set of P + 1 bands, whose widths are spec-
ified by a perceptual model. Since we are only interested in
the shape of the envelope, we can assume a fixed factor for
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Fig. 2: To determine the split frequencies the distribution
quantizer splits the cumulative mass (vertical axis) using P =
5 points into P + 1 equal size segments.

the first band and encode the remaining P factors relative to
the first factor. When each band is scaled with the associated
factor ASF,p, the error caused by quantization has the same
expected value and thus the same perceptual effect on all fre-
quencies.

According to equation 1 we define the envelope as
ESF,k = ASF,p(k), where p(k) denotes the band that contains
the sample xk.

3. DISTRIBUTION QUANTIZATION

Linear prediction (section 2.1) is known to give the optimal
polynomial solution to the minimum mean square error prob-
lem. However quantization of its parameters makes up a sig-
nificant part of the complexity of modern codecs [14, 15].
Moreover, it is also difficult to incorporate perceptual crite-
ria such as a non-uniform accuracy on the frequency axis in
their estimation. On the other hand, envelope models based
on scale factors (section 2.2) can be easily quantized since
the parameters are uncorrelated, but the accuracy of such en-
velopes tends to be lower.

We propose an envelope model named distribution quan-
tizer (DQ), which aims to combine the benefits of both linear
prediction and scale factor bands. Its objective is to split
the spectrum into equal-magnitude blocks, such that we
only need to transmit the border-frequencies but not their
level. Distribution Quantizer is heuristically similar to the
line spectral frequency description of linear prediction coef-
ficients [14]. The idea of line spectral frequencies is to split
the linear prediction polynomial into two polynomials whose
roots are on the unit circle and then only code the angle. This
means, similar to distribution quantizer, they approximately
describe the distribution of signal mass along the frequency
axis.

Specifically, we first define the cumulative sum of the
magnitude spectrum as Ck =

∑k
m=0Xm as depicted in fig-

ure 2. By choosing P equidistant points on the cumulative-
magnitude axis, we obtain those P frequency bins which split
the spectrum into equal-magnitude blocks. These P points
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Fig. 3: In this example the distribution quantizer (DQ) has
P = 5 splits points, which separate the spectrum into P + 1
segments of equal spectral mass. Spline interpolation in cu-
mulative domain gives a smoother envelope in frequency do-
main (DQint). For better visibility both envelopes are shifted
vertically.

are illustrated in figure 2 by dashed lines. Since we are work-
ing with discrete signals we can for better accuracy interpo-
late between the integer frequency bins. These consecutive
split frequency bins then describe P + 1 blocks with equal
magnitude.

In the next step, we synthesize a piece-wise constant spec-
tral envelope model. This can easily be done since the fre-
quency borders are known and all segments have the same
magnitude CN/(P + 1). The result is depicted in figure 3
with a solid line.

Informal experiments showed that accuracy can be further
improved by interpolating between the split points in cumu-
lative magnitude domain using splines. With the frequencies
that separate the segments, the overall magnitude of the spec-
trum and the knowledge that all segments have equal mag-
nitude, we can instantly reconstruct the P significant points
in the cumulative magnitude domain as depicted in figure 2.
We can then interpolate between these points to estimate the
original cumulative magnitude curve.

The spline interpolation is constrained to have a continu-
ous derivative at the segment borders. This means the tilt Tp
(1 ≤ p ≤ P ) between neighboring segments is defined as

Tp =
Sp+1 − Sp−1

Fp+1 − Fp−1
, (4)

where Sp is the cumulative magnitude at the split frequency
bin Fp. Furthermore according to the property of the cumula-
tive sum the edges are defined as F0 = 0, S0 = 0, FP+1 = N
and SP+1 = CN and the corresponding tilts are

T0 =
S1 − S0

F1 − F0
=
S1

F1
and TP =

SP+1 − SP

FP+1 − FP
. (5)

As a final step, we transform the estimated curve back into the
frequency domain by differentiating to get a smooth envelope.
Figure 3 shows the effect of the spline interpolation on the
envelope as a dashed line.
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Fig. 4: Illustration of how spectral envelopes of linear predic-
tion (LP), scale factor bands (SFB) and distribution quantizer
(DQ) model one frame of a signal. For visual clarity the en-
velopes are shifted vertically.

Distribution quantizer can be summarized as an envelope
model of speech, that is described by P frequency bins that
split the spectrum into segments of equal magnitude as well as
the overall magnitude Cn. This is the same amount of infor-
mation that is also needed to model linear prediction or scale
factor band envelopes of the same order.

4. EVALUATION

To determine the performance of envelope models, we use
entropy and correlation. It seems natural to also compare the
bit-consumption of these models, but since in this work we
did not perform any quantization this would not be a viable
measure.

Therefore we first measured the entropy, which quantifies
the amount of information in a signal. The entropy Ên for a
value Xn is defined as

Ên = − log2(P (Xn)), (6)

where P (Xn) denotes the probability of Xn. Entropy cor-
responds to the number of bits required to encode a signal,
whereby a lower entropy means that a lower number of bits is
required for coding.

In our experiment we assume a Laplacian distribution of
the input signal so that the probability of a sample can be
calculated using

P (Xn) =
1

2Bn
e−|Xn/Bn| where Bn =

∣∣∣∣En√
2

∣∣∣∣ . (7)

Secondly, we measured the normalized correlation be-
tween the envelope models and the signal magnitude. This
measure correlates with the signal to noise ratio, assuming
that the envelope is scaled optimally, whereby it provides a
natural measure of envelope quality.

We calculate the normalized correlation Ĉ using

Ĉ =
(
∑
XnEn)

2∑
Xn

2∑En
2 . (8)
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Fig. 5: Illustration of the entropy and correlation between envelope and signal over a 4500 ms segment from the input file.
The waveform is depicted on the top followed by measurement results for linear prediction (LP), scale factor bands (SFB) and
distribution quantizer (DQ).

The value lays between 0 and 1, where a higher values means
better correlation and thus higher SNR.

To evaluate the envelopes we used the same set of critical
items that was also used in development of MPEG USAC [3].
It consists of 15 single channel items of speech in various lan-
guages, music in different genres, as well as mixtures, down-
sampled to a sampling rate of 12.8kHz. The signal was sepa-
rated into 30 ms frames using a step size of 20 ms and multi-
plied with a Hamming window. These parameters correspond
to those used in G.718 codec [16].

We applied the algorithms of linear prediction, scale fac-
tor bands and distribution quantizer on a frame by frame basis.
For all methods the envelope order was P = 16, which is also
used by AMR-WB [2]. To determine the linear prediction co-
efficients we applied a power of 2 to the spectrum and used
the autocorrelation method from [1]. We furthermore defined
the scale factors to be the mean magnitude of the samples in
the respective band. Informal tests showed that for distribu-
tion quantizer we get the best results when applying a power
of 0.5 to the magnitude spectrum.

Typical envelopes obtained with respective algorithms are
illustrated in figure 4. To evaluate their performance we cal-
culated for each envelope model and frame the mean entropy
as well as the correlation according to section 4.

5. RESULTS

Figure 5 illustrates the performance of the different envelope
models over a segment of speech. We observe that the en-
tropy is nearly the same for all three envelopes. Specifically,
the mean entropies over the whole material are 36.4 for scale
factor bands, 36.2 for linear prediction and 36.3 for distri-
bution quantizer. Figure 6a illustrates the distribution of the
mean entropies over the course of the input signal. The dif-
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Fig. 6: Box plots of (a) entropy / (b) correlation of linear pre-
diction (LP), scale factor bands (SFB) and distribution quan-
tizer (DQ) measured over a set of speech and audio samples.

ference between linear prediction and distribution quantizer
is small but still statistically significant.

Figure 5 also shows the correlation between signal and en-
velope in the bottom plot. It can be seen that the distribution
quantizer, which is depicted as a solid line, performs equally
well or often significantly better than the other models. From
figure 6b we observe that the mean correlation of the distri-
bution quantizer is clearly higher than that of both the scale
factor bands and linear prediction. Moreover, the variance of
correlation is lowest for the distribution quantizer.

Analyzing the results using an Analysis Of Variance
(ANOVA) test followed by a multi comparison t-test con-
firms that the mean correlations of all three envelopes are
significantly different (p < 0.01). The best value is given
by the distribution quantizer with 0.669, followed by linear
prediction with 0.541 and scale factor bands with 0.475.

Since scale factor bands and linear prediction are estab-
lished and evolved methods, we do not expect a vast superi-
ority at this point. Nonetheless the improvements are already
visible and significant.
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6. CONCLUSION

In this work we introduced an envelope model called distribu-
tion quantizer for speech and audio applications. It is based
on splitting the signal into segments of equal magnitude such
that an accurate envelope model can be reconstructed using
the splitting points only.

Our experiments show that, in terms of entropy, the distri-
bution quantizer performs better than scale factor bands and
almost as good as linear prediction. Furthermore distribution
quantizer has a higher correlation with the input signal than
scale factor bands or linear prediction. With optimal scaling,
distribution quantizer would thus have a higher signal to noise
ratio than the other methods.

Speech and audio coding applications naturally also re-
quire efficient methods for quantizing the envelope model.
Quantization and coding of scale factor bands is straightfor-
ward with regular entropy coders [8]. Coding of linear pre-
dictive models is much more complicated and computation-
ally complex since it requires vector quantizers since the pa-
rameters are highly correlated [15,17]. In comparison, the pa-
rameters in distribution quantization can be readily quantized.
Moreover, since the parameters of the distribution quantizer
have intuitively simple interpretations, we can readily use per-
ceptual criteria such as non-uniform quantization on the fre-
quency axis.

Distribution quantization thus provides an accuracy which
is equal or better than conventional envelope models, while si-
multaneously providing a domain which can be readily quan-
tized and where perceptual modeling is straightforward. The
proposed model thus gives a simple yet effective model of
envelopes for all speech and audio applications.
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