
ANGULAR INFORMATION RESOLUTION FROM CO-PRIME ARRAYS IN RADAR 
 

Radmila Pribić 

 

Sensors Advanced Developments, Thales Nederland Delft, The Netherlands 

 

ABSTRACT 

 

Angular resolution can be improved by using co-prime 

arrays instead of uniform linear arrays (ULA) with the 

same number of elements. We investigate how the 

possible co-prime angle resolution is related to the angle 

resolution from a full ULA of the size equal to the virtual 

size of co-prime arrays. We take into account not only the 

resulting beam width but also the fact that fewer 

measurements are acquired by co-prime arrays. This fact 

is especially relevant in compressive acquisition typical 

for compressive sensing. This angular resolution is called 

angular information resolution as it is computed from the 

intrinsic geometrical structure of data models that is 

characterized by the Fisher information. Based on this 

information-geometry approach, we compare angular 

information resolution from co-prime arrays and from the 

two ULAs. This novel resolution analysis is applied in a 

one-dimensional azimuth case. Numerical results 

demonstrate the suitability in radar-resolution analysis. 

 

Index Terms— resolution, information geometry, co-

prime arrays, compressive sensing, radar 

1. INTRODUCTION 

Resolution is defined by the minimum distance between 

two objects that still can be resolved. Besides the sensing 

bandwidth, the signal-to-noise ratio (SNR) is also crucial 

in the ability to resolve close objects (e.g.[1]). The sensing 

bandwidth of angle processing is given by the wavelength 

and the antenna aperture size: either actual as in a full 

uniform array or virtual as in the case of co-prime arrays. 

Our resolution analysis includes SNR and processing gain 

(PG) as being critical with the spatial acquisition of fewer 

samples what is typical for compressive sensing (CS). 

When seeking the resolution limits, we keep exploring 

a practical combination of information geometry (IG) and 

CS in radar ([2]). IG is stochastic signal processing that 

treats the stochastic inferences as structures in differential 

geometry (e.g. [3-5]). The intrinsic geometrical structure 

of measurement models is conveniently characterized in 

terms of the Fisher information metric. Accordingly, 

potential resolution of sensors is based on information 

distances on such statistical manifolds. 

When focusing on the system level, we also check 

how the resolution analysis suits sparse-signal processing 

(SSP), and provides the limits in high resolution. SSP is 

nowadays a major part of CS that is also optimized to 

information in measurements. The optimization is based 

on the two conditions: sparsity of processing results and 

the sensing incoherence (e.g. [6]). In radar, SSP can be 

seen as a refinement of existing processing (e.g. [7-8]). 

SSP is crucial in the back end of a sensor with CS, while 

its front end facilitates compressive acquisition of 

measurements. When fewer measurements are enabled 

already before reception as in the case of co-prime arrays, 

the compressive acquisition is usually called sparse 

sensing (e.g. [9]). Compressive acquisition makes also 

overall PG, certainly PG from SSP, additionally important. 

Optimal PG from SSP can be achieved if spatial 

measurements (needed for angles) are combined with 

temporal measurements (needed for range and doppler). 

Both IG and CS have a potential to improve radar 

performance (and perhaps also lower the costs) because 

the demands of data acquisition and signal processing can 

be optimized to the information content in radar 

measurements. Our resolution analysis with IG and CS is 

novel, and also understood directly in practical cases. 

In this paper, we focus on effects to angular resolution 

from fewer measurements acquired by active co-prime 

linear arrays (LAs). Moreover, since we keep exploring CS 

at the system level, we also investigate how measurements 

from the co-prime LAs suit SSP in the back-end.  

1.1. Related Work 

Information resolution has been studied (e.g. [2], [5] and 

[10]) but not related to co-prime arrays or compressive 

acquisition as typical for CS.  

Sparse sensing by co-prime sampling has been studied 

separately in time and in space (e.g. [9]), also combined 

(e.g. [11]) and fully combined in radar ([12], summarized 

in 2.2 in this paper).  

1.2. Outline and Main Contributions 

In Section 2, co-prime LAs are presented in active radar 

with CS (as also indicated in [9]).  In addition, SSP with 

spatial measurements from co-prime LAs is also given (as 

introduced in [12], with main contributions of suitability of 

co-prime LAs to SSP with optimal PG).  

In Section 3, potential angular resolution is derived 

based on information distances, with main contributions of 

including the effects of fewer measurements from sparse 

sensing. In Section 4, numerical results with SSP and the 

resolution analysis are shown. In the end, conclusions are 

drawn and future work indicated. 

2. CO-PRIME ARRAYS IN ACTIVE CS RADAR 

In standard CS, compressive acquisition applies in the 

analog domain as analog-to-information conversion (AIC, 

e.g. [6]) after reception with a full number of antenna 
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elements. In radar, such AIC causes drawbacks such as: 

many analog delicate computations, SNR loss, changed 

stochastic behavior of radar data, etc. Since all the AIC 

difficulties shall better be avoided, we investigate 

compressive acquisition before reception, i.e. sparse 

sensing, and moreover, try exploring the existing means in 

a radar system: waveforms and antenna arrays (AA) for 

temporal and spatial acquisition, respectively (e.g. [12]).  

In this work, we keep exploring AAs for spatial sparse 

sensing with co-prime LAs, and focus on the angular 

resolution. Moreover, while focusing on the system level, 

we also demonstrate SSP in the back-end. 

2.1. Co-prime linear arrays 

Co-prime arrays are defined by a pair of uniform LAs 

(ULAs) formed by   and   elements and with an inter-

element spacing of    and   , respectively, where   and 

  are co-prime integers and   is a parameter usually equal 

to the half-wavelength ([9]). In the case of     and 

   , the element positions of the pair of co-prime arrays 

are shown in Fig. 1. Due to the co-prime spatial sampling, 

the elements of the array coincide only at the positions that 

are a multiple integer of    , e.g. 0 and     in Fig. 1. 

 

 

 

Fig. 1.  Positioning of of co-prime arrays with M=6 and L=5. 

A major advantage of co-prime arrays is a potential to 

achieve high angle resolution using a reduced number of 

sensors. Namely,    beams with resolution of the order 

     can be achieved by two co-prime arrays of order   

and   connected to  -point and  -point DFT filter banks 

generating   and   outputs, respectively (Fig.2 from [9]). 

Each output, defined as:   (   )   (  (       ⁄ ) ) 

and   ( 
  )    (  (       ⁄ ) ), for        , 

       , and         , corresponds to shifted 

versions, in increments multiple of     ⁄ , of the 

responses  (    ) and  (    ), obtained from low-pass 

responses with cut-off spatial frequencies   ⁄  and   ⁄  

and decimated by a factor   and  , respectively. The 

product of responses at the     and     outputs: 

   (   )    (  (       ⁄ ) ) (  (       ⁄ ) )     (1) 

for         , is characterized by a unique pass-

band centered at      ⁄  with width     ⁄ . In other 

words, there is only one overlapping beam among the   

beams of   ( 
  ) and the   beams of   (   ), as 

indicated in Fig. 2. Moreover, from the    combinations 

of the two responses, different    overlapping beams are 

obtained, exactly as in the case of an    DFT filter bank 

for an ULA with    elements.  

Measurements from co-prime receive arrays have been 

applied to DOA, i.e. angle (e.g. [9], [13] and [14]), or 

angle-frequency processing (e.g. [11]). These processing 

techniques are based on covariance (2
nd

 order statistics) 

what is not very convenient for radar processing. 

 

Fig. 2. Unique pairs of L transmit and M receive responses 

from co-prime LAs (with M=6 and L=5, Fig. 1) over ML 

angle cells (as in [9]). Each cell is uniquely represented by a 

pair (     ), as given in (1) and utilized in (4).  

2.2. SSP with co-prime AA measurements 

Raw radar measurements y (e.g. [15]) can be modeled as:  

              y = Ax + z  

by a sensing matrix A, a sparse radar profile x, signals Ax 

and a (complex Gaussian) receiver-noise vector z with zero 

mean and equal variances , p(z|)   exp|z|
2
/). When x 

is sparse, the usual SSP, e.g. LASSO, applies as:  

xSSP = arg minx { y-Ax+ |x 

with the l1-norm |x|1 promoting the sparsity, the l2-norm |y-
Ax| minimizing the noise, and a regularization parameter  

that balances between the two tasks. In radar, the 

parameter is closely related to the detection threshold 

(e.g. [7-8]). An underdetermined system can be solved i.e. 

M measurements in y can be enough for N outputs in x, 

because of the sparsity, i.e. only K nonzeros in x, M < N,  

K < M, and incoherence of A (e.g. [6]).  

The basic SSP from (3) uses complex-valued 

measurements directly what is preferred in radar because 

of higher processing gain (PG, e.g. [15]). The covariance-

based processing works with co-prime receive arrays 

leading to power-based SSP. Moreover, the covariance 

estimation needs training data or snapshots that are hardly 

available from a radar system. Finally, power-based SSP 

can hardly work for all radar parameters (i.e. range, 

doppler and angles) at once as desired for optimal PG.  

Therefore, we prefer exploring transmit-receive co-

prime arrays as more appropriate for active radar ([12]). As 

indicated in [9], with co-prime integer numbers M and L of 

receive and transmit elements, respectively, an outcome 

   (t) of an     receive filter (whose pattern is known for 

all ML angles, as in [9], and shown in Fig. 2), at time t and 

angle   ,         , can be modeled as:  

      
(t) ∑     

( )  
   (      

      
)     ( ) 

where   ( ) is an echo at t from   , a pair (   ) is unique 

for     
,           , (e.g. (m, l) is (1,1) for    at n =1, 

in Fig. 2),     and     are responses of the     receive, 

and an     transmit filter (interpreted over all ML angles, as 

in Fig. 2), respectively, and   ( ) is the DFT of the noise.  

The received data    (t) contain already co-prime 

products       , and moreover, the temporal part   ( ) 

remains unchanged. Finally, we create an Nx1 data vector 

 ( ) with   ( )   ∑    ( )
 
   being its    element. 

30d 

6d 

0 5d 

m 

l 

n 
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Now we can build a model suitable for SSP, with a vector 

 (t) of radar measurements at ML virtual elements coming 

from inverse DFT of the M received data sorted in  ( ), as:  

 (t)  ( )     ( )   ( )                

where  ( ) is the Nx1 co-prime data vector  is an MLxN 

steering matrix whose     column:         
   at   , has 

ML distinct (virtual) positions  ,    [0 2ML-(M+L)]. The 

steering values: receive      and transmit      write as:  

            and            , respectively. Such a 

steering matrix   applies also to an LA of size N.  

Hence, only M received data are acquired by the AA 

for an Nx1 angle profile  ( ), M<N, N=ML, directly with 

less AA elements and without AIC. 

The spatial data  (t) from (5) can be extended to 

doppler and range by modeling  ( ) over a coherent 

processing time t. Thus, the echo   ( ) of a target at angle 

  , delay    and doppler    is modeled as a replica of a 

(single) transmitted signal  ( ) shifted in time by    and in 

frequency by   , and with amplitude  (        )  as:  

      ( )    (    )   (      )  (        )    

For the simplicity, we elaborate further a range-only 

case in pulse radar. (The extension to doppler is 

straightforward.) Temporal sampling is not compressive 

yet but kept Nyquist in an NxNt matrix   of spatial 

measurements  (t) taken over Nt time samples, for N 
estimates of delays via an NxNt model matrix S aiming for 

an NxN angle-range profile matrix X. A data model writes 

as   =      , whose vector form is suitable for SSP 

from (3). The model matrices S and F in the combined 

model are mutually incoherent by their physical nature. 

Namely, shifts in time and shifts in phase are correctly 

isolated by the physics. This also holds for shifts in 

frequency in the doppler matrix.  

Recall that receive-receive, i.e. passive, co-prime 

arrays provide M+L measurements. ML products of two 

sums are involved in the covariance estimate, each written 

as: [∑   ( )        ( )] ∑   ( )        ( ) 
 . The only 

outcome: ∑ |  ( )|
 

       
 , matters while many cross-

terms are ignored under the assumptions of uncorrelated 

target echoes and i.i.d. noise. In addition, even such an 

ideal covariance estimate provides only |  ( )| , i.e. 

power, for temporal processing, and thus, no doppler and 

no coherent processing at all. Accordingly, this 

covariance-based SSP can hardly give as much PG as the 

SSP based on (3)-(6). 

3. ANGULAR INFORMATION RESOLUTION 

Information geometry (IG) is the study of manifolds in the 

parameter space of probability distributions, using the tools 

of differential geometry (e.g. [3-5]). These spaces are 

generally non-Euclidean, which basically implies that the 

inner product of two vectors   and  : ⟨   ⟩      ,  is 

redefined as: ⟨   ⟩       , where   is a metric tensor 

defined by the Fisher information matrix in IG. The metric 

tensor makes the actual length of curve differ from the 

length in Euclidean space. The shortest path between two 

points is called a geodesic what is the extension of the 

notion of a straight line to non-Euclidean spaces. A clear 

example of a geodesic in a non-Euclidean space is the 

shortest path on the spherical surface. Here, straight lines 

do not exist: the shortest path between two points on the 

spherical surface is the shorter great circle arc. 

We derive potential resolution based on information 

distances in an azimuth-only case whose measurements are 

acquired from different LAs. In particular, we investigate 

how the possible co-prime angle resolution is related to the 

angle resolution from a full ULA of the size M and a full 

ULA of the size ML.  

A received signal    at an array-element position    

(measured in half-wavelength units) is modeled as:  

                                          

where   is a target echo,   is the angle parameter (instead 

of  ,          as in Section 2) and    is the receiver 

noise, i.e. complex Gaussian with zero mean and equal 

variances , p(  |)   exp|  |
2
/). The target echo   is 

kept constant (so-called SW0 in radar, e.g. [15]). For fair 

comparison, we let the transmit array as well as the echo   

be equal in all the three receive-array cases described as:  

 ULA with M elements: {  } = {0 1 … M-1}; 

 ULA with ML elements: {  } = {0 1 … ML-1}; 

 co-prime LA with M receive elements: {  } = {0 L 2L 
… (M-1)L}; 

The Fisher information metric  ( ) for the angle 

parameter   writes as (e.g. [2] and [16]):  

 ( )     [
     ( | )

   ]    
  

 
∑   

 
        ∑   

 
  

where     is the input     of a target, and  ( | ) is the 

Gaussian probability density function  ( | ) of a vector   

of measurements from an LA given the unknown 

parameter  . The second derivative used in (8), writes as:  

     (  | )

         
 (  ⁄ )  {  

   }         

where the matched-filtering (MF) value:   
    also appears. 

The expected value is -   
    ⁄  as used in (8). Note in 

 ( ) that PG from an AA configuration comes from the 

sum ∑   
 

 , and that the edge elements contribute most.  

In the accuracy analysis, the metric  ( ) is typically 

applied to the Cramer-Rao bound (CRB) of the mean 

squared error (MSE) of an unbiased estimator  ̂ of  , i.e. 

   ( ̂)       ( )    ( )⁄  (e.g. [16]). 

In the resolution analysis, information distances  on this 

1D statistical manifold are simply computed (e.g. [2]), as:  

  (      )   ∫ √ ( )      
    

 
  √     ∑   

 
 .  (9)   

Information resolution is higher if the information distance 

is larger. With the same separation    between two 

angles, the information distance differs only because of 

 ( ). Thus, the same information distance at    can be 

achieved by different LA configurations but only with 

appropriate input SNR. Since our goal is to assess changes 

in information resolution of different LAs, we compare 

information distances from (9).  (Finding the information 

resolution at       from  (         ) at which two 

angles can be resolved is another goal, e.g. [2].)  
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4. NUMERICAL RESULTS 

Numerical results on angular information resolution with 

co-prime LAs are given here. Moreover, while focusing on 

the system level, we also demonstrate SSP in the back-end. 

4.1. Co-prime arrays and SSP 

Angular resolution of co-prime LAs (being connected to a 

DFT filter bank, M=6 and L=5 as in Fig. 1) is indicated by a 

single beam of all the ML beam responses, in Fig. 3a. The 

co-prime response is comparable with the response of an 

ULA with ML elements (Fig. 3b). The advantages of the 

co-prime array solution are also clear when compared to an 

ULA with M receive elements, as shown in Fig. 3c. 

Numerical tests with the co-prime LAs measurements 

from (4) demonstrate angle processing from (5), and also 

angle-range processing indicated in (6) in Fig. 4 and Fig. 5, 

respectively. SSP from (3) is performed by yall1 ([17]). In 

both cases, 12 nonzeros are randomly located over the 

estimation grid.  The true amplitude  of a nonzero in x is 

 

 

Fig. 3. A beam of: a) co-prime arrays with (M+L) elements 

(Fig. 3) and an ULA with: b)  ML and c) M elements.  

 

Fig. 4. SSP of 12 angles in a model from (5) .  

 

 

Fig. 5. SSP of 12 nonzeros in an angle-range profile (vector 

and matrix forms) in a model from (6) . 

kept constant (so-called SW0) and given by its SNR, SNR 

= ||
2
/, where  is fixed: =1. A realistic case of range 

processing in pulse radar is merged with the angle 

processing. The NtxN sensing matrix S contains delayed 

replicas of a transmitted pulse that is a linearly frequency 

modulated (LFM) waveform, with the bandwidth equal to 

the sampling frequency.   

This angle-range processing demonstrates the potential 

of the co-prime LAs in CS radar whose optimal PG is 

feasible because spatial and temporal data are merged in y, 

and used in SSP of a radar profile x. The extension also 

enlarges the sparsity of such a radar profile because the 

same targets are looked in a larger parameter space. 

4.2. Angular information distances from co-prime LAs  

The advantages of the co-prime array solution are 

evident from beam widths when compared to ULAs with M 

and ML elements, as in Fig. 3. Besides the beams from 4.1, 

we also explore the whole potential angular resolution 

based on information distances in an azimuth-only case 

whose measurements are acquired from LAs, as explained 

in Section 3. In particular, since fewer measurements are 

acquired by co-prime arrays, we investigate differences in 

the possible angle resolution with co-prime arrays in 

comparison with the full ULA of size M and of size ML. 

For fair comparison of the PG effects, we let the transmit 

array as well as the target echo   be equal in all the three 

receive LA cases. Moreover,   is kept constant and equal 

to one, = 1, so that the target (input) SNR can be ignored, 

SNR = ||
2
/ = 1. The data model is common as given by 

(7) while LA configurations differ per case as:  

 ULA M: {  } = {0 1 … M-1}; 

 ULA ML: {  } = {0 1 … ML-1}; and 

 co-prime (M,L) M receive: {  } = {0 L 2L … (M-1)L}.  

a) 

b) 

c) 
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Fig. 6. Information metric  ( ) as defined in (8), and 

computed for three LA configurations, at SNR = 1.   

 

Fig. 7. Information distances as defined in (9), and computed 

with  ( ) from Fig. 6. Separation      of 2/ML is the 

DFT bin size indicating resolution from 4.1 and Fig.3a-b. 

As expected, the full ULA with ML receive elements 

acquires the largest  ( ) (providing the best information 

resolution in  ) as obvious from Fig. 6 and Fig. 7 with 

results from the three LAs, M=6 and L=5 (as in Fig. 1). 

However, although having M receive elements only, the 

co-prime LAs perform fairly close to the full ULA with ML 

elements. The information distances (i.e. the potential high 

resolution) from the co-prime LAs are significant at small 

  , as shown in Fig. 7. E.g. at the specific      of 2/ML 

(that is the DFT bin size in Fig. 3a-b) the information 

distance is 3.4960 as compared to 8.7203 of the full ULA. 

As given in (9), for the same information resolution, this is 

to be compensated by 6.22 times stronger SNR. This also 

holds for the accuracy given by    ( ). Furthermore, co-

prime LAs perform also much better than the full ULA 

with M receive elements. At the typical      of 2/ML, the 

information distance is 3.4960 as compared to 0.6992 of 

the full ULA. This means that with the same number of 

receive elements, the co-prime LAs reaches the same 

information resolution with 25 times weaker SNR. Thus, 

regarding the angular information resolution, the co-prime 

LAs are much closer to the full ULA with ML elements 

than to the full ULA with M elements.  

5. CONCLUSIONS 

Potential angular resolution is crucial when using co-

prime AAs that can be convenient for spatial sparse 

sensing in the front-end of a sensor with CS. In the back-

end, the resolution potential is also relevant in SSP as it 

poses the limits to the SSP high-resolution performance.   

Accordingly, we investigate not only the resulting 

beam width that depends on the AA configuration size, but 

also the effects of fewer measurements that are acquired by 

co-prime AAs. These PG effects can be seen in angular 

information resolution because it is computed from the 

intrinsic geometrical structure of data models that is 

characterized by the Fisher information.  

Based on this information-geometry approach to 

angular resolution, we can conclude that active co-prime 

LAs with (M+L) elements perform much more closely to 

the full ULA with ML elements than to the full ULA with 

the same number M of receive elements. Moreover, we can 

also conclude that the concept of information resolution is 

appropriate for the resolution analysis in radar because of 

the completeness of the crucial effects it can take into 

account: the AA configuration and the input SNR.   

5.1. Future work 

In further work on information resolution, we will extend 

the analysis to all radar parameters: range, doppler and 

angle(s) in order to be able to resolve close targets in the 

whole parameter space. Moreover, while focusing on the 

system level, we will also explore the ease of achieving 

high resolution per parameter. Finally, we will keep 

designing the SSP estimation grid based on the information 

resolution what also involves proper sensing incoherence.  
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