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ABSTRACT

Efficient recovery of sparse signals from few linear projec-

tions is a primary goal in a number of applications, most no-

tably in a recently-emerged area of compressed sensing. The

multiple measurement vector (MMV) joint sparse recovery is

an extension of the single vector sparse recovery problem to

the case when a set of consequent measurements share the

same support. In this contribution we consider a modification

of the MMV problem where the signal support can change

from one block of data to another and the moment of change

is not known in advance. We propose an approach for the

support change detection based on the sequential rank esti-

mation of a windowed block of the measurement data. We

show that under certain conditions it allows for an unambigu-

ous determination of the moment of change, provided that the

consequent data vectors are incoherent to each other.

Index Terms— sparse recovery, multiple measurement

vector, time-varying support, stationarity window

1. INTRODUCTION

Recovery of sparse signals, i.e., signals that can be approxi-

mated by only few non-zero coefficients in some representa-

tion, from a small number of linear measurements is of great

interest in a wide variety of applications ranging from im-

age to array processing. In this paper we consider the mul-

tiple measurement vector (MMV) sparse signal representa-

tion which is a straightforward extension of a basic sparse

signal model, in a similar manner referred to as single mea-

surement vector (SMV), to a finite number of jointly sparse

vectors sharing the same support, i.e., positions of their non-

zero elements [1, 2]. It has been shown that such a jointly-

sparse structure allows for efficient simultaneous MMV re-

covery with improved performance compared to an equivalent

SMV setting [3–5].

Exploitation of the sparse joint recovery is however sig-

nificantly challenged if the signal support exhibit variations

over time which is a common case in many practical scenar-

ios. A currently prevalent way to account for the possibly

changing support is to incorporate a dynamic update mecha-

nism of one form or another directly into the recovery step.

While the details of the available algorithms may vary as well

as the exact considered signal model, the basic idea is to ap-

ply recursive reconstruction that appropriately penalizes the

presence of innovations in the newly-arrived measurements

compared to already available ones [6–8]. In this contribution

we propose a different approach to tackling the problem of

time-varying support that does not require numerous iterative

reconstruction steps: we first detect the moment of the sup-

port change based on the analysis of the measurement data,

and then apply existing MMV recovery algorithms to a se-

quence of identified this way independent MMVs.

It has been shown that in the static MMV setup the signal

sparsity can be assessed via estimation of the effective rank

of the block of measurement data provided that the individ-

ual signal vectors are incoherent to each other [9]. Capital-

izing on the results obtained in [9], we propose to use the

rank information in order to estimate the moment of the sup-

port change in the quasi-static scenario considered here. To

do so we analyze the evolution of the consequent rank esti-

mates of a sliding window of measurement data and derive

conditions on the window size that ensure a unique determi-

nation of the exact moment of change in a noise-free setting.

Additionally we numerically show how the presence of such

an estimate improves the performance of the support recov-

ery step. Note that although we consider the specific class of

signals that fulfill the incoherence assumption, [10] indicates

that this restriction can be overcome by appropriate measure-

ment design.

2. NOTATIONS AND MMV DATA MODEL

2.1. Some notations

First we introduce several notations to be used throughout the

paper. A vector x of length N is called k-sparse if exactly

k � N of its entries are non-zero. The support of a vector is

a set of the positions of its non-zero elements, while a support

SX of an N × T matrix X is a union over all the supports of

its columns xi so that
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SX = supp (X)
�
=

T⋃
i=1

supp (xi) . (1)

Finally, a matrix X is called jointly k-sparse if it has exactly

k non-zero rows and all its columns are k-sparse, so that

∀i ∈ [1, T ] SX = supp(xi). (2)

2.2. Multiple measurement vector data model

The multiple measurement vector (MMV) data model is for-

mulated as

Y = B ·X, (3)

where Y = [y1,y2, . . . ,yT ] ∈ CM×T is a matrix of mea-

surements yi ∈ CM×1 of some k-sparse signals xi ∈ CN×1.

The matrix B ∈ CM×N in (3) is the sensing matrix with

N > M > k. Finally a collection of vectors xi form a jointly

k-sparse matrix X , so that X = [x1,x2, . . . ,xT ] and the

support of X satisfies (2).

The goal of the MMV problem associated with (3) is to

recover the matrix X from the measurements Y for a known

sensing matrix B [1, 5]. It can be formulated as

X̂ = argmin
X

|supp (X) | s.t. B ·X = Y . (4)

A sufficient and necessary condition for signal recovery in the

MMV setting is known to be

|supp(X)| = k <
spark(B)− 1 + rank(Y )

2
, (5)

where spark(B) is the smallest number of columns of B that

are linearly dependent [1]. Note that although (5) does not

explicitly impose any conditions on the rank of X henceforth

we focus on the best-case MMV scenario when rank(X) =
|SX| = k, i.e., individual vectors xi are non-collinear and

T > |SX| [5]. It can be shown that (5) then becomes

spark(B) > k + 1. (6)

2.3. MMV with quasi-static varying support

The jointly sparse input signal X from (3) can be seen as a

collection of independent data snapshots xi. Obviously, the

key feature allowing the usage of (4) for the recovery of X is

that the support of each individual vector xi does not change

from snapshot to snapshot. However, in many practical ap-

plications, the support of the input signal can exhibit varia-

tions from one block of data to another, preserving the jointly

sparse structure of (2) for some number of snapshots. Thus,

we call such MMV signals with varying but quasi-static sup-

port ”quasi-stationary.” It is worth noting that although for

the sake of convenience we commonly refer to the individ-

ual snapshots xi as if they were taken in time, they could be

as well interpreted as taken in frequency, space or any other

domain.

In this contribution we examine the problem of joint

sparse recovery of quasi-stationary MMV signals. For sim-

plicity we consider a scenario where the support changes

only once while an extension to an arbitrary number of such

changes is straightforward. Thus, the input matrix X consists

of two sub-matrices X1 and X2 which are k1 and k2 jointly

sparse so that

X =[X1X2], (7a)

|SX1
| = k1 ≤ kmax and |SX2

| = k2 ≤ kmax (7b)

SX1
�= SX2

, (7c)

where X1 ∈ CN×t1 and X2 ∈ CN×t2 with t1 > kmax and

t2 > kmax, kmax is the maximum possible sparsity order and

t1 + t2 = T . If the instance t1 when the support changes

from SX1
to SX2

, referred to as the stationarity window of

X1, is perfectly known, the recovery of X can be formulated

according to (4) as a set of two MMV problems:

X̂ :

⎧⎪⎨
⎪⎩

X̂1 = argmin
X1

|supp (X1) | s.t.B ·X1 = Y1

X̂2 = argmin
X2

|supp (X2) | s.t.B ·X2 = Y2

, (8)

where X̂ = [X̂1X̂2], Y1 = [y1,y2, . . . ,yt1 ], and Y2 =
[yt1+1,yt1+2, . . . ,yT ].

However, when the exact moment of the support change

is unknown or the change itself is not anticipated, direct ap-

plication of (4) to the recovery of the signal of (7a)-(7c) will

lead to a performance degradation. The reason behind this is

that X from (7a)-(7c) is not exactly jointly sparse anymore.

Therefore, in order to efficiently apply joint recovery of the

form of (8) to the signals with supports that can vary over

time, a method to estimate stationarity windows of individual

signals is highly required.

3. DETECTION OF THE QUASI-STATIC VARYING

SUPPORT VIA RANK EVOLUTION ANALYSIS

The main idea behind the proposed approach is to exploit the

linear independence of the individual vectors xi and formu-

late the task of the support change detection in terms of the

rank estimation of a set of blocks of measurement data. To do

so we analyze the relation between the resulting ranks of the

consequent windows of measurement data and the supports of

the corresponding blocks of input data depending on the size

and the position of the blocks.

We begin by defining a window Y w
p as a block of mea-

surement data of size M ×m so that

Y w
p = B ·Xw

p , (9)

where Xw
p = [xp,xp+1, . . . ,xp+m−1], p ∈ [1, T −m + 1],

and the window size m > 1 is a parameter we choose. From
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Value of |SXw
p
|

Window size m Range of index p 1. SX1
⊂ SX2

2. SX2
⊂ SX1

3. otherwise

1 ≤ p ≤ pm k1 k1 k1

1 m ≤ min(t1, t2) pm + 1 ≤ p ≤ t1 k2 k1 k1 + d◦

t1 + 1 ≤ p ≤ T −m+ 1 k2 k2 k2

2 m > t1 1 ≤ p ≤ T −m+ 1 k2 k1 k1 + d◦

3 t2 < m ≤ t1
1 ≤ p ≤ pm k1 k1 k1

pm + 1 ≤ p ≤ T −m+ 1 k2 k1 k1 + d◦

Table 1: Cardinality of the support set SXw
p

depending on the size of the window m, the sliding step p and the three possible

types of intersection of the supports SX1
and SX2

.

the above definition it immediately follows that

rank(Y w
p ) ≤ rank

(
Xw

p

)
≤ |SXw

p
|. (10)

Thus, the ultimate goal of this work is to determine: 1) the

conditions on the sensing matrix B and the window size m

under which a change in the support of Xw
p caused by the

transition from X1 to X2 uniquely corresponds to a change

in the rank of Y w
p ; 2) exact relations between the moments

of these changes.

To accomplish this we examine two parts of the inequality

(10) independently. The left-hand part of (10) turns into an

equality, i.e., rank
(
Y w
p

)
= rank

(
Xw

p

)
, when the spark of

B is > max
p

(
rank(Xw

p )
)
. It can be shown that a sufficient

condition for this to be fulfilled is

spark (B) > min(k1 + k2,m), (11)

which, compared to (6), introduces an additional term of

min(k1 + k2,m) − kmax − 1 in case of m ≥ kmax. As

the right-hand part of (10) is slightly more complicated, we

analyze it in two steps: first, we study the value of |SXw
p
|,

after which we establish its relationship to the rank of Xw
p .

3.1. Evolution of the window support

For the value of |SXw
p
| we can distinguish a number of ex-

clusive cases depending on the window size m, the relation

between the supports SX1
and SX2

, and the range of the in-

dex p. These are summarized in Table 1 where the following

short-hand notations are used

• last sliding index pm = t1 −m+1 corresponding the the

case when SXw
p
= SX1

,

• cardinality d∩ = |SX1
∩ SX2

| of the intersection of the

supports SX1
and SX2

,

• cardinality d◦ = k2 − d∩ of the relative complement of

the support of X1 in the support of X2.

As a result the following lemma can be formulated

k2

k1

|SXw
p
|

pmpm + 1 p

(a) SX1
⊂ SX2

(d∩ = k1)

|SXw
p
|

p

k1

k2

t1t1 + 1
(b) SX2

⊂ SX1
(d∩ = k2)

|SXw
p
|

k1

p

k2

k1 + d◦

pm
pm + 1

t1
t1 + 1

(c) SX1
� SX2

, SX2
� SX1

Fig. 1: Cardinality of the support set SXw
p

versus sliding index

p for m ∈ [2,min(t1, t2)].

Lemma 1. For any supports SX1
and SX2

there is at least

one index g = t1 + δ where δ depends only on m such that

|SXw
g
| �= |SXw

g+1
| if and only if m ∈ [2,min(t1, t2)]

Lemma 1 establishes a condition on the window size m

that guarantees a presence of the change in the cardinality of

the window support. Moreover, an index corresponding to

this change, i.e., the value of g for which |SXw
g
| �= |SXw

g+1
|, is

defined exclusively by t1, m and the type of intersection be-

tween SX1
and SX2

. Table 1 demonstrates how the cardinality

|SXw
p
| evolves with the index p. This evolution is character-

ized by a distinct behavior for the three types of intersection

between SX1
and SX2

as illustrated in Figure 1.

3.2. Evolution of the window rank

The next step is to determine how the behavior of SXw
p

trans-

lates into the rank of Xw
p . Since X is full rank, any of it

sub-matrices including Xw
p will also be full rank and thus
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rank(X w
p )

k2

k1

ppm + kδpm

(a) SX1
⊂ SX2

(d∩ = k1)

rank(X w
p )

k1

p

k2

t1 + 1t1 − kδ + 1

(b) SX2
⊂ SX1

(d∩ = k2)

p

rank(X w
p )

k2
k1

p2

ps

t1 + 1

k′
max

p1

k′
max=min(k1 + d◦,m)

pm

(c) SX1
� SX2

, SX2
� SX1

Fig. 2: Rank of the sliding window Xw
p versus sliding index p for m ∈ [max(k1, k2) + 1,min(t1, t2)] where kδ = |k1 − k2|,

p1 = pm+min(dmk, d◦), p2 = p1+ps and ps = min
(
Hs

m(d◦−dmk), dmk

)
+min

(
d∩−Hs

m(d◦−dmk), dmk−Hs
m(d◦−dmk)

)
.

rank(Xw
p ) =

⎧⎨
⎩

min(|SXw
p
|,m) , p ∈ [1, pm]

k′ , p ∈ [pm + 1, t1],
min(|SXw

p
|,m) , p ∈ [t1 + 1, T −m+ 1]

(12)

where k′ ≤ |SXw
p
| ∈ N. In order to give an expression for the

value of k′ we first introduce some additional notations:

• the number of columns p′ of X2 in Xw
p ,

p′ =

⎧⎨
⎩

m , if p > t1 − 1
p− t1 +m− 1 , if p ∈ [pm + 1, t1 − 1]
0 , p < pm + 1

,

(13)

• modified Heaviside function Hm(t) and and scaled mod-

ified Heaviside function Hs
m(t) defined as

Hm(t) =
Hs

m(t)

t
=

{
1 , if t > 0
0 , if t ≤ 0

, (14)

• the redundancy dmk = Hs
m(m − k1) of the window size

m with regard to k1.

Taking into account these, it can be shown that the value of k′

is given by (15).

Although (15) is an exact formula, it is rather cumbersome

to analyze in the full form. However, it can be significantly

simplified if considered independently for the three types of

the support intersection identified in Section 3.1 and the two

cases for the value of dmk, namely dmk > 0 and dmk ≤ 0.

This way one can comprise a table showing the evolution of

the rank of Xw
p in a form similar to Table 1. While we omit

presenting the full table here due to the space limitation, we

summarize the main result in the following lemma instead

Lemma 2. For any supports SX1
and SX2

there is at

least one index n = t1 + δ′ where δ′ ∈ Z such that

rank(Xw
n ) �= rank(Xw

n+1) if and only if m ∈ [max(k1, k2)+
1,min(t1, t2)].

Similar to Lemma 1, Lemma 2 provides a condition on

the window size m that ensures a presence of a change in the

rank of a sliding window Xw
p with its moment being deter-

mined by the value of t1. Furthermore, the behavior exhibited

by rank(Xw
p ) essentially repeats that of |SXw

p
| except for the

presence of monotonic slopes within the sliding index range

of [t1 −m + 2, t1 + 1] as demonstrated in Fig. 2. The num-

ber, length and type of the slopes are uniquely determined by

the type and size of intersection of the supports SX1
and SX2

.

However, in contrast to the case of the support evolution, not

all the moments of change in the rank of Xw
p are solely deter-

mined by t1 and m anymore. It turns out that some of them

additionally depend on the cardinality of the support intersec-

tion and/or their difference as shown in Fig. 2.

3.3. Estimation of the stationarity window

Taking into account (11) and the fact that the largest value that

spark(B) can take is M+1we can formulate a final condition

on the window size m

max(k1, k2) < m < min(M + 1,min(t1, t2) + 1). (16)

When (11) and (16) hold, the value of t1 can be found by

identifying the index p that corresponds to the first and/or the

last change in the values of the rank of Y w
p . This is because

for the cases of the support intersection corresponding to (a)

and (c) from figure 2, the index of the first change in the rank

of Xw
p is pm = t1 −m + 1 where the window block size m

is known, whereas for (b) and (c) the index of the last change

is given by t1 + 1. Finally, rank(Y w
p ) = rank(Xw

p ) ∀p ∈
[1, T −m+ 1] due to (11).

Thus, given the vector r = [r1, r2, · · · , rp, · · · , rT−m+1]
of rank estimates of Y w

p , one can formulate a following rule

t1 =

{
pfc +m− 1 , if ∀p ∈ [pfc, plc] rp < rp+1

plc − 1 , otherwise
, (17)

k′ = min(k1,m− p′) + min
(
d◦,min(p′, Hs

m(dmk)
)
+
(
1−Hm(dmk)

)
·min(d◦, p

′) +Hm(p
′ − dmk)·(

Hm(p
′ − dmk) ·min

(
Hs

m (d◦ − dmk) , p
′ − dmk

)
+min

(
d∩, H

s
m

(
p′ −Hs

m(dmk)−Hs
m(d◦ −Hs

m(dmk))
)))

.
(15)
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Fig. 3: Empirical probability of wrong support recovery Per

versus the number of measurements per snapshot M

where rp = rank(Y w
p ) and pfc and plc are the indexes of the

first and last change of values in r, respectively.

4. SOME NUMERICAL RESULTS

In order to empirically evaluate how the absence of stationar-

ity window estimate influences the performance of the joint

sparse recovery in the case of MMV with time-varying quasi-

static support we performed a series of simulations. For the

generation of the sensing matrix B we considered a class of

random Gaussian matrices whose elements were drawn inde-

pendently from a complex normal distribution of unit vari-

ance, after which they were normalized so that every column

had unit norm. The input signal X was generated according

to (7a)-(7c) where N = 128, t1 = t2 = 30 and k1 = 6.

The values of it non-zero entries were drawn from a unit vari-

ance complex normal distribution. The supports of the sub-

matrices X1 and X2 were generated randomly according to

the scenarios (a) and (c) from Fig. 2 where the value of k2 was

defined as k2 = d◦ + k1 and k2 = k1, respectively. Also, we

used the simultaneous orthogonal matching pursuit (SOMP)

algorithm for signal recovery [2].

Figure 3 presents the results for the empirical probabil-

ity of the wrong support recovery of X1 versus the number

of measurements per snapshot M . The black square-marked

solid line represents the case when t1 was estimated via (17)

and the support of X1 was then recovered from the first t1
snapshots. The colored lines in turn show the results for the

case when no estimate was available and X1 was recovered

from t1 + tδ snapshots where tδ is the number of snapshots

added from X2. The presented results clearly show that in

case of quasi-stationary input signals, failure to provide an

information on the moment of the support change results in a

performance degradation that increases both with the increase

of the delay tδ in detecting the change and the difference be-

tween the supports. On the contrary, the application of the

proposed rank evolution approach allows to efficiently avoid

this effect provided that the signal of interest exhibit linear

independence between snapshots.

5. CONCLUSIONS

In this paper we have discussed joint recovery of full-rank

quasi-stationary MMV. We have proposed an approach for

support change detection that exploits rank information ob-

tained from a windowed portion of measurement data and

provided an extensive analysis of the window rank evolution

with regard to the window size and possible types of the sup-

port change. The proposed approach allows to adapt the num-

ber of snapshots used for recovery in order to efficiently uti-

lize the joint-sparse structure of MMV, provided that it is full

rank. Although in the current work we have focused on the

noise-free case only, the proposed approach can be extended

to the noisy observations by application of effective rank es-

timation techniques.
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