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ABSTRACT

In this work, we carry out a first exploration of the possibil-
ity of increasing the performance of Deep Neural Networks
(DNNs) by applying diversity techniques to them. Since
DNNs are usually very strong, weakening them can be im-
portant for this purpose. This paper includes experimental
evidence of the effectiveness of binarizing multi-class prob-
lems to make beneficial the application of bagging to Denois-
ing Auto-Encoding-Based DNNs for solving the classical
MNIST problem.

Many research opportunities appear following the diver-
sification idea: We mention some of the most relevant lines at
the end of this contribution.

Friendly dedicated to Prof. Giovanni Sicuranza, with deep
admiration and sincere appreciation.

Index Terms— Auto-encoding, classification, depth, di-
versity.

1. INTRODUCTION

1.1. Preliminaries

Digital Signal Processing (DSP) has provided practical solu-
tions to a lot of different problems in many fields –from geo-
physics to health, including mechanics, environment, compu-
tation, communications, and biology, to mention just a few.
Maybe signal transmission has been one of the areas which
contributed in a relevant mode to the development of DSP.
Since most physical communication channels are esentially
linear and time-invariant, frequency played a key role. Lin-
ear filtering was the research focus. Adaptive (linear) filters
emerged mainly to deal with lack of knowledge, and subse-
quently to cope with non-stationarity. Equalization and echo
cancellation serve as well-known examples. [1] was the start-
ing point for all this.

Yet even in transmission some cases appeared for which
non-linearity was unavoidable, such as satellite communica-
tions. And other related tasks –not only coding/decoding,
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but speech and object recognition– are not satisfactorily solv-
able by linear approaches. These facts provoked an increas-
ing interest in non-linear filtering. But, as wisely Mathews
and Sicuranza said in [2], a milestone along this research av-
enue, two obstacles required sustained efforts: Implementa-
tion complexity and understanding difficulties. We, human
beings, are reluctant to work with ideas that our mind does not
interpret easily –curiously enough, our perception is clearly
non-linear.

On the other hand, early Learning Machines (LMs), espe-
cially Neural Networks (NNs), became usable [3]. Contrarily
to one of the most popular families of non-linear architec-
tures, the Linear In the Parameter (LIP) filters, that consists of
linear combinations of fixed non-linear transformations, NNs
are based on trainable transformations, such as sigmoidal ver-
sions of linear combinations –the well-known Multi-Layer
Perceptrons (MLPs). The difficulties with the LIP filters is
how to select the fixed transformations, and sizing and train-
ing for NNs. Things become worse when real-time adapta-
tion is needed: It is easy for a given LIP filter, but to select
its transformations to work in an unpredictable non-stationary
environment is a serious challenge. Real-time adaptation is
intrinsecally difficult for NNs, and only recently some ideas
on how to do it can be considered as preliminary steps for this
objective [4].

1.2. Diversity and depth

Until few years ago, the immense majority of MLP designs
were shallow, i.e., with one or –exceptionally– two hidden
layers. The one-hidden-layer architectures being theorically
universal approximators [5, 6], available training examples
are finite and controlled approximations to optimal designs
are impossible. To close the wall, although the basic train-
ing Back-Propagation (BP) algorithm and its modifications
and extensions permit theoretically to train deep architectures
(DNNs), the difficulties in weight initialization and the many
minima that cost landscapes show occluded this solution.

Fortunately, to select convenient (repetitive) architectures,
such as Convolutional Neural Networks (CNNs) [7], or to ap-
ply auxiliary techniques to gain depth before training to solve
the addressed problem, as well as some algorithmic recent ad-
vances, make the design of DNNs affordable [8–10]. And the
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performances that these LMs offer are impressive: See some
records in [9].

A different way to gain expressive power in LM designs
is to build ensembles. They consist of a number of (rela-
tively simple) diverse learners whose outputs are aggregated,
as firstly proposed in [11]. Training is carried out separately
in some cases, or jointly in others, such as in boosting [12],
whose fame is well deserved. Let us emphasize that learners’
diversity is the key for success. There is not room here even
for a brief presentation of the main diversification techniques,
but [13, 14] are pretty complete textbooks on the subject.

In our humble opinion, to conceive, to design, to evaluate
and to apply highly expressive –and adaptive, when needed–
LMs is today’s main challenge for signal and data process-
ing: Many unsolved relevant problems are non-linear and dif-
ficult –and some of them, non-stationary. And when thinking
about how to increment the expressive power of LMs, a natu-
ral question must be answered: Does diversity improve deep
learning? I.e., can we get advantage if we combine diversity
and depth?

1.3. Diversity plus depth

There have been some previous efforts to answer the above
question. Multi-Column CNNs (MC-CNNs) [15, 16] applied
image subsizing and different predistortions to induce diver-
sity. In [17], trainable linear/softmax combinations were used
to aggregate the outputs of MC ensembles. Sequentially dif-
ferent problems are created in Deep Stacking (Convex) Nets
(DSNs) [18, 19] by injecting the available outputs as inputs
for each new (deeper) learner. In [20], consecutive video
frames serve to create optical flows to design deep CNN
ensembles. Using multiple triphone states to train context-
dependent DNN ensembles for speech recognition is studied
in [21]. And the multiview spectral embedding technique
of [22] is employed in [23] for diversifying the aggregation
of some DNNs.

The mentioned diversification attempts being sucessful,
and MC and DSN designs gaining more and more attention,
they do not constitute a systematic approach to the use of ac-
credited standard ensemble design methods with DNNs: All
the proposed diversification methods are “ad hoc”, and not at-
tempt of applying standard techniques has been carried out. In
this article, we present some preliminary results of our work
in that direction. We remark that our present objective is not
to beat performance records, but exploring possibilities for it
in a future. We wish to understand how to efficiently combine
diversity and depth by analyzing and discussing some experi-
mental results.

The rest of this contribution is structured as follows. In
Section 2 we introduce the problem to be addressed in the
experiments, as well as the basic diversification method and
DNNs to be applied. The experiments and their results are
sequentially presented in Section 3, in order to permit an or-

dered discussion of the difficulties we face and potential so-
lutions for them. The conclusions of this preliminary work,
some insights for further research, and selected avenues to be
explored close the paper.

2. DATABASE, BASIC DIVERSITY, AND DNNS FOR
THE EXPERIMENTS

2.1. MNIST

MNIST [7] is a classical database for DNNs’ benchmarking
experiments. It represents handwritten digits by 784 (28x28),
256 (grey) levels variables. It consists of 50000 training,
10000 validation and 10000 test (labeled) samples. The best
classification result for this problem is an error rate 0.2%, ap-
proximately, a slightly superhuman performance.

2.2. Bagging

Bagging (“Bootstrap and aggregating”) [24] separately trains
a number N of unstable learners, each one with a different
bootstrap sample of the training set. Their outputs are aggre-
gated by means of simple non-trainable schemes, such as their
decisions’ majority vote. We remark that unstability means
that diverse training sets produce parameter values that are
different enough to generate outputs whose aggregation re-
duces their implicit “training noises”, improving the overall
performance.

2.3. Denoising Auto-Encoding Based Deep Neural Net-
works

Denoising Auto-Encoding Based Deep Neural Networks (D-
AEB-DNNs) [24] are deep MLPs that are constructed layer-
by-layer in the following manner. The first layer is expan-
sive –its size is greater than the size of the input– and serves
to provide an output whose target is the corresponding input
sample. To avoid the identity operation, some noise is added
to the inputs, keeping the output targets in their original form.
After BP training, the output layer is removed, and the pro-
cess is repeated with MLPs of the same hidden layer size until
a certain depth. Then a classification layer with softmax acti-
vations for multi-class problems indicates the result. A final
refining supervised training is usually applied.

3. EXPERIMENTS AND THEIR DISCUSSION

3.1. Experimental framework

We used the software available in [25], mentioned in [26].
The DNN architecture was the same that Vincent et al. em-
ployed in [27] (called SDAE-3 there): 3x1000 auto-encoding
layer plus the final 10-softmax classification. Training partly
followed Vincent et al.’s experimental practice: Gradient
steps 0.01 for the first layer and 0.02 for the rest and for
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refining, and 40 epochs (that are enough for convergence).
However, we were not able of reaching the performance
in [27] using 25% added noise, and our best results corre-
spond to 10% noise level: % error rate average ± standard
deviation, 1.58±0.06 (figures in [27] are 1.28±0.22).

With respect to bagging, the non-trainable parameter va-
lues we explored were N∈{25, 50, 100} and bootstrap sizes
B∈{60,80,100,120} (% training set size). To alleviate the
high computational cost of these designs, we first designed
150 bagged versions for each value of B, and we built the
ensembles by randomly selecting N of them. 10 random se-
lections are carried out to average the results. Obiously, this
reduces the effective diversification, but, we repeat, our ob-
jective is just to determine if diversity improves DNNs per-
formance.

3.2. Direct application of bagging

The first experiments we carried out tried to directly apply
bagging to the selected D-AEB-DNN architecture. They
failed. Even the “omniscient” trick –selecting the values of
non-trainable parameters N and B according to the test set,
which is an improper design procedure, but useful to appreci-
ate the potential limits of the method being applied –gave an
error rate 1.63±0.01 (N=100, B=120: Clear saturation effects
appeared for these parameters). Oviously, no improvement is
obtained.

A close look into these experiments indicated that the obs-
tacle can be the following: An error rate 1.58% is very good
for a 10-class problem, showing that the used D-AEB-DNN
elements are very strong, i.e., they perform so well that, even
being unstable, there is not room for taking advantage from
diversification, because their outputs still tend to be too si-
milar. So, weakening the learners seemed to offer an oppor-
tunity.

3.3. The One vs. One approach

To reduce the expressive power of the D-AEB-DNN learners
–reducing their size– constitutes an evident option for weak-
ening them. But, in this first exploration, we preferred to
avoid the required high computational effort for it. Conse-
quently, we considered a simpler alternative: To binarize the
10-class problem –which is also a diversification technique.

Binarization is the conversion of a multi-class problem
into a number of binary problems whose results indicate the
multi-class solution. Its most elementary forms are One vs.
Rest (OvR), in which C classifiers are trained to separate
the samples of each one of C classes from the other sam-
ples, and One vs. One (OvO) [28], that designs the C(C-1)/2
binary classifiers solving each possible dichotomy. Since
10(10-1)/2=45 designs are affordable, we selected OvO for
our preliminary experiments. It can be said that OvO is su-
perior to OvR in general terms, specially when OvR faces

Fig. 1: D-AEB-OvO-DNN architecture for multi-class prob-
lems. AEn are the diverse (deep) auto-encoding steps, and
OvOEn the One vs. One ensembles. MV means majority
vote, x is the input, and o is a class indicator.

imbalanced problems (very different sizes of dichotomy pop-
ulations), that is the case even for balanced datasets when C is
relatively high. The information reduction for training serves
to reduce the strongness of the corresponding D-AEB-DNNs.

Before presenting our experimental results, we must em-
phasize that Dietterich and Bakiri [29] perceived that multi-
class binarization is equivalent to design error correcting
codes for transmission, hence the name Error Correcting Out-
put Codes (ECOCs) that the subsequent ensembles receive.
There is not space here even for a brief overview of ECOCs,
but [12] dedicates a chapter to this subject. In any case, it is
clear that using adequate ECOCs surely will allow to improve
the performance of the designs we are proposing.

Figure 1 presents the AEB-DNNs’ ensemble we use for
this second group of experiments, in which bagging is again
applied, but final classifiers are OvO implementations.

Table 1 shows the performance results we obtained using
OvO at the classification level of the D-AEB-DNNs, designs
we call D-AEB-OvO-DNNs.

First of all, let us say that, as expected, the OvO mono-
lithic design provides a small, but clear, improvement with
respect to its multi-class counterpart. Secondly: Bagging di-
versity becomes effective for OvO designs. Validation selects
N=100, B=100, and N=100, B=120, and the corresponding
test performances are 0.85±0.01 and 0.86±0.01, almost a
50% reduction with respect to the original D-AEB-DNN and
more than 30% lower than the test performance of the mono-
lithic D-AEB-OvO-DNN. Let us insist on the fact that OvO
simply produces a moderate improvement, but it allows bag-
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a

HH
HHHN

B
60 80 100 120

25 2.50±0.04 1.73±0.20 1.65±0.09 1.65±0.08
50 1.65±0.10 1.07±0.08 1.02±0.10 1.00±0.10
100 1.27±0.05 0.82±0.04 0.70±0.02 0.70±0.01

b

D-AEB-
1.40±0.06

OvO-DNN
H

HHHHN
B

60 80 100 120

25 2.61±0.08 1.81±0.21 1.72±0.12 1.72±0.12
50 1.73±0.12 1.11±0.12 1.04±0.13 1.02±0.12

100 1.31±0.01 0.86±0.00 0.85±0.01 0.86±0.01

Table 1: Performance results (% error rate average± standard
deviation) for the D-AEB-OvO-DNN machine and bagging
ensembles using it. a) Validation set, b) test set. Best results
are in boldface, validated design results are in italics

ging to be effective, further decreasing the error rate.
The saturation effects that appear when N or B increase

are really important: They appear in the same regions of val-
ues of these non-trainable parameters both for validation and
test, and, therefore, they do not only indicate that there is not
need of exploring bigger values, but also this parallel flatness
means that validation will select good values for the final de-
sign. Note that the selected design performance and the “om-
niscient” result do not show any relevant difference.

4. CONCLUSIONS AND FURTHER WORK

In this paper, we have shown that to weaken DNNs is a possi-
bility to gain performance advantage by combining them with
standard diversification techniques, such as bagging. In par-
ticular, binarization of multi-class problems constitutes an at-
tractive improvement opportunity. Of course, much more ex-
perimental work is needed to determine what DNN designs
and diversification procedures are really useful for different
kinds of problems: Do not forget that strongness can be an ob-
stacle, and that it depends on the dataset under study. We can
add that preliminary results of other experiments we are car-
rying out (using switching [30] as diversification technique,
diversifying only at the final classification step, etc.) are also
offering advantageous results.

Among all the new research directions that this work
opens, we consider that to explore
• the effects of approppiate ECOC forms

• architectural weakening of DNNs, and its potential com-
bination with ECOC

• other diversification methods

• the possibility of diversifying only the final (classifica-
tion) layer of DNNs

• if other improvement mechanisms can be advantageously
combined with these diversification ideas

is fundamental to allow designing really “Big Learning” ma-
chines, one of the tools (adaptation is the other) which is re-
quired to face some difficult and relevant Big Data problems:
The “Big Problems” that justify this kind of effort. We cor-
dially offer our collaboration for this purpose.
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