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Urla, İzmir, Turkey

† ISTI-CNR,

via G. Moruzzi 1, 56124,

Pisa, Italy

ABSTRACT

Despite the popularity of linear process models in signal and

image processing, various real life phenomena exhibit nonlin-

ear characteristics. Compromising between the realistic and

computationally heavy nonlinear models and the simplicity of

linear estimation methods, linear in the parameters nonlinear

models such as polynomial autoregressive (PAR) models have

been accessible analytical tools for modelling such phenom-

ena. In this work, we aim to demonstrate the potentials of Re-

versible Jump Markov Chain Monte Carlo (RJMCMC) which

is a successful statistical tool in model dimension estimation

in nonlinear process identification. We explore the capability

of RJMCMC in jumping not only between spaces with dif-

ferent dimensions, but also between different classes of mod-

els. In particular, we demonstrate the success of RJMCMC

in sampling in linear and nonlinear spaces of varying dimen-

sions for the estimation of PAR processes.

Index Terms— Polynomial AR, Reversible Jump MCMC,

Nonlinearity degree estimation.

1. INTRODUCTION

Nonlinear models may be more favorable than linear models

when data is generated from a nonlinear source or when lin-

ear modelling requires too many model parameters. In spite

of the popularity of nonlinear models, e.g. Nonlinear autore-

gressive (NAR) models, most of these models do not pro-

vide a solution to estimate the model parameters easily and

their potential use is very limited. Polynomial autoregressive

(PAR) differs from the other NAR processes since they are

linear-in-the-parameters and thus many mathematical appli-

cations developed for linear models can be employed without

much difficulty [1].

PAR models can be represented as in (1) where ǫ(n) is

excitation sequence with distribution N (0, σ2
e), a

(1)
i , a

(2)
i,j and

a
(p)
i,... are PAR coefficients for first order, second order and pth

order polynomials, respectively, p is the nonlinearity degree

and k is the AR memory of the PAR model. A PAR model

can be represented in the notation: P(p)AR(k).

x(n) =
k∑

i

a
(1)
i x(n−i)+

k∑

i

k∑

j

a
(2)
i,j x(n−i)x(n−j)+...

+

k,...
∑

i,...

a
(p)
i,...x(n− i)...+ ǫ(n). (1)

PAR models are based on the Volterra series expansion as

suggested by (1). This expansion has great success in mod-

elling many real life phenomena such as a pilot plant control

system [2], short term wind speed prediction [3], brain sig-

nals [4], seismology [5] and communications [6].

Reversible Jump Markov Chain Monte Carlo (RJMCMC)

was first introduced in [7] as a Bayesian model identifica-

tion tool. It is an extended and generalized version of the

MCMC algorithm which is used when the parameter subspace

dimension is fixed. RJMCMC provides an algorithm for the

construction of reversible Markov chain samplers which jump

between parameter subspaces of different dimensions. In the

literature, RJMCMC has been used in linear model identifi-

cation problems,e.g. in [8, 9] for autoregressive (AR) time

series model selection. However, the sampling strategy of

RJMCMC is not limited to linear models [7] and can also

be used for nonlinear model identification problems in a wide

range of applications.

In this study, we are going to use RJMCMC algorithm to

estimate the nonlinearity degree and the AR length of vari-

ous synthetically generated PAR processes. Generally [2–6],

the nonlinearity degree of selected PAR model, is assumed to

be known. This is not a realistic assumption and in practi-

cal problems the nonlinearity degree needs to be estimated as

well.

In this paper, we contribute to the literature on RJMCMC

by demonstrating the potentials of this method beyond linear

models and in particular we provide results on PAR process

estimation where we estimate the nonlinearity order as well

in contrast to previous works.

The rest of the paper is organized as follows: PAR models

and RJMCMC methodology for PAR model selection prob-

lem are examined in Section 2. The results of the simulations
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are provided in Section 3. Section 4 concludes the paper with

a brief summary.

2. METHODOLOGY

2.1. PAR Models

A P(p)AR(k) model given by (1) can be represented in matrix-

vector form by using the linear-in-the-parameters property;

x = Xa
(p,k) + ǫ, where ǫ ∼ N (0, σ2

e), (2)

where x is n× 1 data vector, X is n× w matrix of past sam-

ples and polynomial products of the data, a(p,k) is w × 1
coefficient vector of P(p)AR(k) model and ǫ is n×1 vector of

excitation sequence. In the last row of Table 1, the number of

model coefficients, w, for different p and k pairs are shown.

x = [x[1], . . . , x[n]]
T
, ǫ = [ǫ[1], . . . , ǫ[n]]

T
, (3)

X =





x[0] . . . x[1− k] x2[0] x[0]x[−1] . . . xp[1− k]
x[1] . . . x[2− k] x2[1] x[0]x[0] . . . xp[2− k]

...
. . .

...
...

...
. . .

...

x[n− 1] . . . x[n− k] x2[n− 1] x[n− 1]x[n− 2] . . . xp[n− 1]



 ,

(4)

a
(p,k) =



a1, a2, . . . , ak, a1,1, a1,2, . . . , ak,k, . . . , ak,k,...,k
︸ ︷︷ ︸

pth order





T

. (5)

Since the excitation sequence is Gaussian, the approxi-

mate likelihood of a PAR data x, can be defined by using the

derivation about AR model order selection problem in [9];

f(x|p, k,a(p,k), σ2
e) ≈ N (ǫ|0, σ2

eIn). (6)

2.2. Hierarchial Model and Priors

The posterior density, f(θ|x), can be written from Bayes The-

orem easily where parameter vector θ consists of the parame-

ters, {p, k,a(p,k), σ2
e , σ

2
a};

f(p, k,a(p,k), σ2
e , σ

2
a|x) ∝ f(x|p, k,a(p,k), σ2

e)×

f(a(p,k)|p, k, σ2
a)f(σ

2
a)f(σ

2
e)f(k)f(p). (7)

The noninformative priors for the AR memory k, and the

nonlinearity degree p, are chosen as uniform with maximum

values kmax and pmax respectively;

f(k) = U(1, kmax) and f(p) = U(1, pmax). (8)

We also choose conjugate priors for the other parameters [9];

f(a(p,k)|p, k, σ2
a) = N (a(p,k)|0, σ2

aIw), (9)

f(σ2
a) = IG(σ2

a|αa, βa), (10)

f(σ2
e) = IG(σ2

e |αe, βe). (11)

The key property of RJMCMC or all MCMC based meth-

ods is to provide convergence, even though we have nonstan-

dard priors and likelihoods with systems that cannot be ob-

served directly or with missing data [10].

2.3. RJMCMC Methodology

Following [7], when the current state is κ, we propose a move

type m with probability Pr(κ → κ′), which changes dimen-

sion, and takes the state to κ′. The acceptance probability,

which is denoted by α(κ → κ′), needs to be calculated.

As stated above, RJMCMC enables to jump between

spaces with different dimensions. There occurs a dimension

difference between the two states and to provide dimension

matching, auxiliary variables u1 with length m1, are pro-

posed from distributions q1(u1). The resulting dimension

matching is; dimκ′ = dimκ +m1 [7].

The general expression for acceptance ratio which defines

a move with dimension change from state κ to a proposed

state κ′ is given below. This form of acceptance ratio is de-

fined as Equation (8) of [7];

(12)

αRJMCMC(κ → κ′)

= min

{

1,
f(θ∗|x)Pr(κ′ → κ)

f(θ|x)Pr(κ → κ′)q1(u1)

∣
∣
∣
∣

∂θ∗

∂(θ, u1)

∣
∣
∣
∣

}

,

where f(.|x) is the target distribution of interest, Pr(κ → κ′)
and Pr(κ′ → κ) represent the probabilities for move m and

its reverse move, q1(u1) is the proposal distribution for aux-

iliary variable vector u1 for move m, θ and θ∗ are parameter

vectors for states κ′ and κ respectively and

∣
∣
∣
∣

∂θ∗

∂(θ, u1)

∣
∣
∣
∣

is the

magnitude of the Jacobian determinant.

Sampling AR length k and nonlinearity degree p require

changing the dimension in the RJMCMC. Firstly we define

the move pairs for this problem. There are 4 types of moves

for this problem which are, birth of a new parameter, death

of an existing parameter, updating the AR coefficients via

MCMC algorithm (life move), updating σ2
e via Gibbs Sam-

pling.

Each move has probabilities Pbirth, Pdeath and Plife satisfy-

ing Pbirth + Pdeath + Plife = 1.

Constructing an RJMCMC for this problem begins firstly

by defining a birth move (birth of a new variable causes an

increase in dimension) from AR memory parameter k to k′

where nonlinearity degree p is fixed. After computing the

posterior distributions as in (7), the acceptance ratio, αbirth =
min{1, rbirth};

(13)

rbirth =
f(x|p, k′,a(p,k

′), σ2
e)

f(x|p, k,a(p,k), σ2
e)

×
f(a(p,k

′)|p, k′, σ2
a)

f(a(p,k)|p, k, σ2
a)

×
Pdeath

Pbirthq1(u1)
×

∣
∣
∣
∣
∣

∂a(p,k
′)

∂(a(p,k),u1)

∣
∣
∣
∣
∣
.

For a death move, we propose a move m which changes

states from k to k′ where k′ < k. Here death move will

be applied and no new parameters are proposed. We remove

the coefficients which belong to AR memory k of parameter

vector a(p,k).
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The acceptance ratio of death move, αdeath(k → k′) =
min{1, rdeath}, is calculated directly from;

αdeath(k → k′) = min{1, 1/rbirth}, (14)

where rbirth is calculated from αbirth(k
′ → k) as in (13).

Life move applies MCMC to update the PAR coefficients

due to there is no dimension change for the life move. Accep-

tance ratio is defined as αlife = min {1, r}. The correspond-

ing value of r is given below;

(15)

r =
f(x|p, k′,a(p,k

′), σ2
e)

f(x|p, k,a(p,k), σ2
e)

×
f(a(p,k

′)|p, k′, σ2
a)

f(a(p,k)|p, k, σ2
a)

×
q(a(p,k)|p, k′,a(p,k

′))

q(a(p,k′)|p, k,a(p,k))
,

where f(x|.) is likelihood distribution and f(a(p,k
′)|.) is

prior distribution for parameter vector. Updated values of pa-

rameters are proposed from the distribution q(a(p,k
′)|p, k,a(p,k))

which is defined below;

a
(p,k′) ∼ q(a(p,k

′)|p, k,a(p,k)) = N (a(p,k
′)|µn, σ

2
eΣ

−1
n ),

(16)

where µn and Σn is,

µn = a
(p,k), and Σn = X

T
X+

1

σ2
a

Iw. (17)

Independently from defined reversible moves, excitation

variance σ2
e is updated at each iteration as in (20) by using all

other parameters which are sampled at recent iteration. The

updating mechanism follows Gibbs Sampling methodology.

The posterior distribution for σ2
e is calculated as [9];

f(σ2
e |x, p, k,a

(p,k)) ∝ f(x|k, a(p,k), σ2
e)f(σ

2
e) (18)

f(σ2
e |x, p, k,a

(p,k)) ≈ N (ǫ|0, σ2
eIn)IG(σ

2
e |αe, βe) (19)

= IG(σ2
e |αn, βn), (20)

where αn = αe +
1

2
n and βn = βe +

1

2
ǫT ǫ.

PAR model selection procedure requires 2 cascaded

RJMCMC steps for AR memory k, and nonlinearity degree p
at each iteration. For each parameter, the algorithm proposes

a candidate parameter according to the selected move type

from proposal distribution. Then, it calculates acceptance

ratio and tests the decision for this candidate. Equations be-

tween (13)-(17) which are derived for AR length, k, when p
is fixed, will be converted to a state that k is fixed and p will

be estimated, when 2nd RJMCMC step is active. The steps of

the algorithm are given in Algorithm 1.

Each RJMCMC step updates one of the model parameters

that is either p or k. As one might see clearly from Table 1,

e.g. if a birth move corresponding to a model change from

P(2)AR(2) to P(3)AR(2) or in a similar manner, a jump from

Algorithm 1 RJMCMC for PAR model selection

1: Given data x

2: k0, p0, Niter, a
(p0,k0), σ2

e(0) values are initialize at t = 0
3: for do t = 1 : Niter

4: RJMCMC for k Use pt−1 for p
5: Propose a move m with Pbirth, Pdeath, Plife

6: Assign k∗ for selected move m
7: Sample u1 ∼ q1(u1)
8: Construct a(pt−1,k

∗) from u1 and a(pt−1,kt−1).

9: Use σ2
e(t− 1) for excitation sequence variance

10: Calculate Acceptance ratio, αk

11: if η <= αk where η = U(0, 1) then

12: kt = k∗

13: a(pt−1,kt) = a(pt−1,k
∗)

14: else

15: kt = kt−1

16: a(pt−1,kt) = a(pt−1,kt−1)

17: RJMCMC for p Use kt for k
18: Repeat same procedure in lines between 5 and 16

for nonlinearity degree p.

19:

20: Sample σ2
e(t) from eq. (20) via Gibbs Sampling

21: end

p = 2 to p = 3, this move requires λ = 9 − 5 = 4 candi-

date coefficients to be proposed from a proposal distribution

to satisfy the dimension matching criteria. Each element, ui,

of the proposed vector u1, where i = 1, . . . , λ is proposed

from uniform distribution U(−δ, δ) and the joint distribution

q1(u1) is defined as;

q1(u1) =
λ∏

i=1

U(−δ, δ), and δ =
0.1

E[|x|]
, (21)

where E[|x|] is the expected value of the absolute value of the

data vector x.

Proposal distribution for candidate coefficients is chosen

to make the candidates independent from recent coefficients

for PAR model selection problem. This selection makes the

Jacobian determinant equal to unity.

3. SIMULATION & RESULTS

In all simulations, initial values for excitation variance prior

distribution are selected as αe = 1 and βe = 2. The initial

values for AR length k0 and nonlinearity degree p0 are set to

1. Maximum values for these parameters are set to 8 and 7,

respectively. a
(p0,k0) is sampled from the prior distribution

which is defined in (9).

Move probabilities are selected as 0.15, 0.15 and 0.7 re-

spectively for Pbirth, Pdeath and Plife. 100, 000 iterations are

simulated to let sampled parameters converge.
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Fig. 1. Histogram for P(5)AR(1) Model Coefficients (a(5,1) = [0.5, 0.2, -0.08, 0.11, -0.07])
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11 different PAR models (3 linear and 8 nonlinear) are

generated for simulations. Each data set has a length of 1, 000
samples (data of length 50, 000 is created and last 1000 sam-

ples are selected so as to provide bounded data). Each data

set is driven with a Gaussian excitation sequence with vari-

ance of σ2
e which is different for each parameter pairs. Vari-

ance value of PAR coefficients’ prior distribution is selected

as σ2
a = 0.01 and remains fixed at each iteration. No sampling

is applied for σ2
a.

Performance comparison of RJMCMC is implemented

with two commonly used model order selection methods AIC

and BIC. The equations for these are given below;

AIC = 2N + n log(RSS/n), (22)

BIC = log(n)N + n log(RSS/n), (23)

where N is number of parameters for the model, n data length

and RSS is the residual sum of squares which is calculated as;

RSS = xTx− xTX(XTX)−1XTx. (24)

Because of the page limitations, 2 results out of 11 PAR

models will be shown as examples. In Figures 1 and 2 his-

tograms and running means of the coefficients of P(5)AR(1)
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Fig. 4. RJMCMC - Histogram for P(2)AR(3) Model
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Table 1. Detected Percentage of True Models

P(1)AR(1) P(1)AR(2) P(1)AR(3) P(2)AR(1) P(2)AR(2) P(2)AR(3) P(3)AR(1) P(3)AR(2) P(3)AR(3) P(4)AR(1) P(5)AR(1)

RJMCMC 96% 100% 98% 82% 90% 88% 76% 76% 75% 60% 84%

AIC 36% 45% 57% 51% 77% 73% 66% 51% 43% 17% 17%

BIC 100% 100% 98% 100% 96% 66% 92% 4% 1% 2% 2%

# of Coef. 1 2 3 2 5 9 3 9 19 4 5

model are plotted, respectively. Results of first 5, 000 itera-

tions are discarded as burn-in period. P(5)AR(1) model coef-

ficients, a(5,1) = [0.5, 0.2, -0.08, 0.11, -0.07], are estimated

via RJMCMC with Mean Square Error (MSE) of 2.3× 10−3

when MSE of the Least Squares (LS) estimate is 3.1× 10−3.

In Figures 3 and 4, the instantaneous estimates and his-

tograms of parameters p and k for model P(2)AR(3) are

shown, respectively. Algorithm decides true order pair,

(p, k) = (2, 3), nearly 80% of the iterations. By using

these facts, it can be clearly said that, by using RJMCMC,

we can decide the nonlinearity degree of PAR model and the

resulting parameters can be used in an application to find the

best model.

Model detection performances of RJMCMC, AIC and

BIC are shown in Table 1. The performance of RJMCMC

is superior to AIC in all these cases. BIC performs better

than RJMCMC for linear models. However, this good perfor-

mance of BIC is caused by the bias of penalizing the model

complexity. The cost of this bias becomes evident in the

detection probability of BIC for nonlinear models shown in

the last four columns of Table 1 which cannot reach even

5%. This bias of BIC is clearly visible in the percentages of

model decisions of methods RJMCMC, AIC and BIC plot-

ted as a function of nonlinearity degree, p, in Figure 5 for

models P(2)AR(2) and P(3)AR(2). Figure 5 and Table 1 show

that RJMCMC performs nearly as good as BIC for models

with small number of model coefficients and outperforms

both AIC and BIC when the nonlinearity degree is increased

accompanied by an increasing number of model coefficients.

4. CONCLUSIONS

RJMCMC algorithm provides an important success to the

solution of model uncertainty of linear processes by using

Bayesian methods. In addition to the studies which show this

success in linear case, this study demonstrates the potential

of the RJMCMC algorithm when the model-to be identified-

is nonlinear.

The RJMCMC is shown to be superior to the common

model selection methods, AIC and BIC, in estimating the

nonlinearity degree and AR memory of a PAR model which

is a nonlinear model based on Volterra series expansion.

Furthermore, we also show that RJMCMC algorithm can

jump not only between spaces with different dimensions, but

also between different classes of models. This potential of

RJMCMC is demonstrated by sampling in linear and nonlin-

ear spaces of varying dimensions for the estimation of the pa-

rameters p and k.

Usage of RJMCMC in nonlinear case reduces the com-

plexity of many nonlinear real life problems in areas such as

seismology, control systems, wind energy and communica-

tions. As a future work, the proposed method will be ap-

plied to hourly average wind speed data to reveal the nonlin-

ear character of wind speed and to make predictions in cases

when the prediction time is long, e.g. over 12 hours.
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