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ABSTRACT
Blind channel identification plays an essential role in com-
munications, and various approaches have been proposed in
the literature. One of the most important methods for single-
input multi-output (SIMO) system identification is the dis-
tributed subchannel matching (DSCM) algorithm. As the D-
SCM treats each component of the channel coefficient vectors
equally, it has no advantage when the channels are sparse. In
this paper, we propose a sparse DSCM algorithm to blindly
identify some sparse channels. Unlike the common DSCM
algorithm, a sparsity-enforcing regularization term based on
`1-norm or `0-norm, is added into the cost function to exploit
the sparse structure of channels. Some simulations are then
presented to show that the proposed sparse DSCM can im-
prove the performance of estimation in both convergence and
accuracy.

Index Terms— Blind channel identification, sensor net-
works, sparse, subchannel matching, distributed estimation

1. INTRODUCTION

Blind channel identification is one of the most important top-
ics in digital communication systems. Without the require-
ment of a training signal, blind estimation can save channel
capacity and transmission bandwidth. So, it is more prefer-
able in practical applications [1].

In this paper, the blind identification of multiple channels
in a networked system is investigated. In particular, we con-
sider the case that a common source is transmitted to a set of
distributed sensors over a geometrical region. Due to the in-
homogeneous transmission medium, the channels are distinct
at sensors, which correspond to a single-input multi-output
(SIMO) convolutional system model. Our objective is to es-
timate the multiple channels only based on the observed sig-
nals.

In the literature, various blind channel identification meth-
ods for SIMO systems have been proposed, such as subchan-
nel matching (SCM) method [2] and subspace method [3]. In
these algorithms, all the measurements are transmitted to a
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centralized fusion center for processing, and thus a powerful
fusion center is required. Moreover, the centralized process-
ing is also fragile to the failure of the fusion center.

To tackle this problem, in [4,5], a distributed SCM (DSCM)
method is proposed, where a set of sensors cooperatively es-
timate the channels and the source by accessing to the infor-
mation of each sensor’s neighbors in both noiseless and noisy
measurements. Such distributed cooperative estimation can
properly distribute the overall computational load and reduce
the relevant information exchanges.

On the other hand, sparsity (many coefficients of a sys-
tem/vector are zeros or near-zeros) commonly exists in na-
ture. In many wireless communication systems, the propaga-
tion channels involved exhibit a large delay spread, but a s-
parse impulse response consisting of a small number of dom-
inant echoes. For example, terrestrial transmission of high
definition television (HDTV) signals [6], underwater channel
models [7] and communication channels [8] are shown to be
sparse. Recent advances have shown that exploiting the s-
parsity of the vector of interest contributes to improving the
performance of estimation in both convergence and accura-
cy [8–10].

Considering this, in this paper, the blind sparse channel i-
dentification under noisy measurements of a distributed sen-
sor network is studied. By incorporating a sparsity-enforcing
regularization term based on `1-norm or `0-norm into the cost
function, a kind of sparse DSCM algorithm is proposed. Nu-
merical simulations are then performed to show that the pro-
posed sparse DSCM is more effective than the common D-
SCM without considering the sparsity of the channels.

The rest of this paper is organized as follows. In Section 2,
the problem of distributed blind sparse channel estimation is
formulated. In Section 3, a kind of sparse DSCM algorith-
m using gradient descent is proposed. Some simulation ex-
amples are given to validate the proposed algorithms in Sec-
tion 4, followed by the conclusion in Section 5.

2. PROBLEM FORMULATION

In this section, we formulate the problem of blind channel
identification in a SIMO networked system model. Consider
a network consisting of L sensors spatially distributed over a
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Fig. 1. Diagram of blind channel identification in a networked
system. Take sensor i as an example.

region. Here, we use an L × L non-negative weight matrix
C to describe the topology of the network. Assume that the
network is connected and C is a symmetric stochastic matrix
with its entities ci,j computed by the following Metropolis
rule [4, 9]

ci,j =


1/(1 + max{di, dj}) j ∈ Ni, j 6= i,
1−

∑
l∈Ni

ci,l i = j,
0 otherwise,

(1)

whereNi denotes the neighbors of node i and di is the degree
of node i.

All the sensors are interested in the common source
s(n) through their own FIR channel with impulse response
{hi(n)}, resulting to a SIMO system, see Fig. 1. With refer-
ence to Fig. 1, the output yi(n) collected at each sensor i, the
input data s(n) and the FIR channel {hi(n)} are related by

xi(n) = hi(n) ∗ s(n) =
M∑
k=0

hi(k)s(n− k),

yi(n) = xi(n) + wi(n),

i = 1, 2, . . . , L, n = 1, 2, . . . , N,

(2)

where the order of the FIR channel is M + 1, s(n) ∈ R
denotes the source signal, N is the length of source signal,
the notation ‘∗’ denotes convolution operation, yi(n) ∈ R
denotes the observation of the i-th sensor, wi(n) ∈ R de-
notes the measurement noise. Here, we are interested in the
case that the channels are sparse, that is, a large proportion of
channel coefficients hi(n) are zeros.

Similar to the studies in blind identification [2, 4, 5], some
assumptions are assumed throughout the paper.

A1. All transfer functions {Hi(q)}Li=1 share no common
zeros, where Hi(q) =

∑M
k=0 hi(k)q

−k denotes the trans-
fer function from the source to the i-th sensor and q−1

stands for the back shift operator in time domain.

A2. The source signal s(n) is stochastic and has linear
complexity larger than 2M + 1.

A3. The noise wi(n) has bounded amplitude.

Assumptions A1-A2 provide sufficient conditions for the
blind identifiability of the SIMO system in (2), see e.g., [2].
The boundedness assumption A3 is required for the estima-
tion using finite observation samples. We also assume that
the data transmission between sensors is perfect and each n-
ode can only exchange information with its neighbors. Our
goal is to identify the multiple sparse channels only based on
the observation sequences at each sensor.

3. SPARSE DISTRIBUTED SUBCHANNEL
MATCHING ALGORITHM FOR BLIND CHANNEL

IDENTIFICATION

In this section, we present a sparse DSCM algorithm to tack-
le the situation that the subchannel coefficient vectors are s-
parse. Suppose that the noisy observations {yi(n)}L,N

i=1,n=0

are available. Denote

Yi ,


yi(N) yi(N − 1) · · · yi(N −M)

yi(N − 1) yi(N − 2) · · · yi(N −M − 1)
...

. . . . . .
...

yi(2M) yi(2M − 1) · · · yi(M)

 .
(3)

According to the network topology, an augment matrix Y is
defined as

Y =

[
0 · · · 0︸ ︷︷ ︸

i−1 block entries

−Yj 0 · · · 0︸ ︷︷ ︸
j−i−1 block entries

Yi 0 · · · 0
]
,

(4)
if there is a link between node i and j.

Considering that the channels are sparse and motivated
by the idea of compresses sensing [8–10], we incorporate a
sparsity-enforcing regularization term, `p-norm( p = 0, 1) in-
to the cost function of the conventional DSCM algorithm [4].
That is, the channel can be identified by minimizing the fol-
lowing `p-norm penalized cost function

argmin
h6=0
‖Yh‖2 + γξp(h), (5)

where h = [hT
1 · · · hT

L]
T with hi = [hi(0) · · ·hi(M)]T , ξp(h)

denotes the `p-norm of h, γ is the regularization parameter to
balance the penalty of the norm constraint and the data fidelity
term ‖Yh‖2. When γ = 0, (5) equals to the common DSCM
algorithm.

To solve the above optimization problem, we use the gra-
dient descent algorithm. However, due to the existence of
noise, the estimation of h may converge to a trivial solution.
To avoid this, we use a similar method as [4]. In the follow-
ing, we give the centralized solution first and then extend it
to distributed implementation. Inspired by [4], the channel
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vector h can be iteratively estimated by

ĥ(k + 1) = ĥ(k)− αk‖ĥ(k)‖4[YTY ĥ(k) + γ∂ξp(ĥ(k))]

+αkĥ(k)ĥ
T
(k)YTY ĥ(k) + γαkĥ(k)ĥ

T
(k)∂ξp(ĥ(k)),

(6)
where ∂ξp(·) denotes the derivative of ξp(·).

Note that the term ∂ξp(·) in (6) depends on the norm con-
straint in-used. For the `1-norm, we have

ξ1(x) = ‖x‖1. (7)

where x = [x(1) · · ·x(n)]T , and thus its component-wise
derivation with regard to x(i) is

∂ξ1(x(i)) = sgn(x(i)) =

{
x(i)
|x(i)| if x(i) 6= 0,

0 if x(i) = 0.
(8)

The `0-norm counts the number of nonzero entries in a vec-
tor, thus indicating the model’s complexity [10]. As it is non-
convex, the `0-norm is usually approximated by

ξ0(x) = ‖x‖0 ≈
M∑
i=1

(1− e−a|x(i)|), (9)

where a is a positive constant. Its component-wise derivation
with regard to x(i) is

∂ξ0(x(i)) = asgn(x(i))e−a|x(i)|, ∀ 1 ≤ i ≤M. (10)

By approximating e−a|x(i)| with its first order Taylor expan-
sion, (10) can be written as

∂ξ0(x(i)) =a(sgn(x(i))− ax(i))

=

 −(a
2x(i) + a) if − 1

a ≤ x(i) < 0,
−(a2x(i)− a) if 0 < x(i) ≤ 1

a ,
0 elsewhere.

(11)
Next, we use the average consensus method to derive the

distributed solution, where a set of sensors collaboratively es-
timate the multiple channels. As proposed in [4], the two
global variables in (6) can be equivalently represented as

‖ĥ(k)‖4 = L2

(
1

L

L∑
i=1

‖ĥi(k)‖2
)2

,

‖Y ĥ(k)‖2 =
L

2

 1

L

L∑
i=1

∑
j∈Ni

‖Yiĥj(k)−Yj ĥi(k)‖2
 .

(12)
These two global variables can be estimated by running the
average consensus operation such that each sensor shares a
certain computation to approximate the global variables.

Let φ(k) = [φ1(k) · · ·φL(k)]T and ϕ(k) =
[ϕ1(k) · · ·ϕL(k)]

T , where φi(k) = ‖ĥi(k)‖2
and ϕi(k) =

∑
j∈Ni

‖Yiĥj(k) − Yj ĥi(k)‖2.

1

2 4
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7

Fig. 2. The network topology of 7 sensors.

Let φ(k) = [φ1(k) · · ·φL(k)]T and ϕ(k) =
[ϕ1(k) · · ·ϕL(k)]

T , where φ(k) = CRφ(k) and ϕ(k) =
CRϕ(k). C denotes the weight matrix as defined in (1).
According to the concept of average consensus [4], for each
sensor i, the estimates of these two global variables become
L2φ

2

i (k) and L
2ϕi(k), respectively. Then, the channels of

each sensor i can be estimated by the following iteratively

ĥi(k + 1) = ĥi(k)−αkL
2φ

2

i (k)
∑
j∈Ni

(
YT

j Yj ĥi(k))

−YT
j Yiĥj(k)

)
+
αkL

2
ϕi(k)ĥi(k)

−αkγL
2φ

2

i (k)∂ξp(ĥi(k))

+
αkγL

2
ĥi(k)ĥ

T

i (k)∂ξp(ĥi(k)),

(13)

where ∂ξp(·) is given in (8) and (11) for `1 and `0-norm based
sparse DSCM, denoted as `1-DSCM and `0-DSCM respec-
tively.

To summarize, the implementation procedures of sparse D-
SCM algorithms are given in Algorithm 1.

Algorithm 1 Sparse DSCM algorithm.

1. Given the initial condition ĥi(0) for i = 1, · · · , L.
2. Using average consensus algorithm (12) to estimate two

global variables.
3. For i = 1 : L

Update ĥi(k) according to (13), where ∂ξp(·) is com-
puted by (8) and (11) for `1-DSCM and `0-DSCM re-
spectively.

End for
4. k ← k + 1 and go to step 2.

4. SIMULATIONS

In this section, to investigate the performance of the proposed
sparse DSCM algorithm for blind sparse channel identifica-
tion, some numerical simulations are performed.

In the simulation, a network of L = 7 sensors is consid-
ered and its topology is shown in Fig. 2. For the transmitted
symbols, we use BPSK sequences with equiprobable symbol-
s. The length of source signal is N = 150 and the highest
order of each FIR channel is M + 1 = 20. The signal-to-
noise ratio (SNR) is set to 30dB. The number of consensus
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operationsR is set to 50. The step size αk is set to αk = k−1.
Since the step size is quite large at first few iterations, an extra
operation is carried out to avoid the ‘blow-up’ of the estima-
tion during the first few iterations [11]. That is,

ĥi(k) = ĥi(k)I||ĥi(k)||<1 + ĥi(0)I||ĥi(k)||≥1, (14)

where I[·] is an indicator function.
Comparing to the common DSCM, a zero-forcing term

with factor γ is introduced in the optimization function (5)
of the sparse DSCM. So, the performance of sparse DSCM
largely depends on the parameter γ. Moreover, constant a
in (11) is also an important parameter to control the perfor-
mance of `0-DSCM. So, in order to obtain good estimation
performance, suitable parameters γ and a are selected at first.

Fig. 3 depicts the normalized steady-state network error of
the channel coefficients against different γ, where the num-
ber of the nonzero components is set as Mnz = 5 and it is the
same for each subchannel. Note that the normalized errors
are obtained by averaging the last 1000 instantaneous sam-
ples after 15000 iterations. For the `0-DSCM, the results of
different a are also presented. For the purpose of performance
comparison, the results of the common DSCM algorithm (i.e.
γ = 0) are also shown in Fig. 3. From Fig. 3, it is noticed
that the sparse DSCM algorithms are largely dependent on
parameters γ. For both `1-DSCM and `0-DSCM, with the in-
creasing of γ, the normalized error is decreased first and then
increased after a certain value γ. There exists a correspond-
ing region of γ for `1-DSCM and `0-DSCM respectively, in
which they outperform the common DSCM algorithm. More-
over, from Fig. 3, it can be seen that the performance of `0-
DSCM is also dependent on parameter a. From Fig. 3, we
can see that with appropriate a, for example, a ∈ [10, 50],
`0-DSCM outperforms `1-DSCM. Moreover, when γ is set
within [10−2, 10−0.6], sparse DSCM outperforms the com-
mon DSCM significantly.

Based on the former simulation results, we will show the
performances of sparse DSCM algorithms compared with that
of the common DSCM. In this simulation, the number of non-
zero taps in each subchannels is set as Mnz = 5. The regu-
larization parameter γ is set to be 10−0.8 and 10−1.6 for `1-
DSCM and `0-DSCM respectively. The parameter a is set to
20 for `0-DSCM. Initialization conditions of channels are the
same for different algorithms. Fig. 4 shows the normalized
steady-state network error of channel estimation for different
algorithms. From Fig. 4, it is obvious that both the `1-DSCM
and `0-DSCM outperform the common DSCM in estimation
accuracy, where the `0-DSCM is a little bit better than the
`1-DSCM from both the viewpoints of accuracy and conver-
gence.

Fig. 5 shows the normalized steady-state network error of
sparse DSCM and common DSCM algorithms with respect
to different SNRs. In this simulation, the number of non-zero
taps in each subchannels is set as Mnz = 5. The parameter
a is set to 20 for `0-DSCM. It can be found that the sparse
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different algorithms.

DSCM algorithms outperform the common DSCM, and with
the increasing of the SNRs, the errors of three algorithms de-
crease correspondingly.

Next, we investigate the influence of different degree of s-
parsity on the performance of estimation. In the simulation,
the highest order of each FIR channel is M + 1 = 20. we set
the number of the nonzero components Mnz varying from 4
to 20 with an increment of 2 and thus the degree of sparsity
changes from high to low. The simulation results are giv-
en in Fig. 6. Note that in Fig. 6, the y-coordinate values of
each curve present the differences in the error between the
common DSCM algorithm (i.e. γ = 0) and the sparse D-
SCM algorithms. From Fig. 6, it is noticed that the sparse
DSCM algorithms outperform the common DSCM algorithm
when the channels are much sparser, and the degree of supe-
riority decreases as the degree of sparsity reduces. Finally,
when the sparsity disappears, i.e. Mnz = 20, the sparse D-
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SCM algorithms converge to the common DSCM algorithm.
Moreover from Fig. 6, it is noticed that `0-DSCM outperform-
s `1-DSCM when the number of non-zero coefficients in each
channel is less than 18. Therefore, `0-DSCM is recommend-
ed when the channels are much sparser.

5. CONCLUSION

In this paper, we have proposed a kind of sparse DSCM al-
gorithm for blind channel identification in sensor networks.
In contrast with the common DSCM algorithm, our method
takes full advantage of the sparsity of channels by introduc-
ing `1 and `0-norm constraints into the cost function. Nu-
merical simulations are presented to show the effectiveness of
the proposed methods. From the simulation results, we find

that the sparse DSCM, including `1-DSCM and `0-DSCM,
both outperform the common DSCM with suitable parametric
settings when the channels are indeed sparse. Provided that
suitable parameters are selected, `0-DSCM outperforms `1-
DSCM in both convergence rate and accuracy. Moreover, we
also investigate that the degree of sparsity influences the per-
formance of the sparse DSCM algorithms. The sparse DSCM
algorithms are significantly better than the common DSCM
when the channels are much sparser, and they converge to the
latter when the sparsity disappears.
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