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ABSTRACT

In this paper, the performance of massive multiple input mul-

tiple output (MIMO) systems is investigated using reduced

detection implementations for MIMO detectors. The motiva-

tion for this paper is the need for a reduced complexity detec-

tor to be implemented as an optimum massive MIMO detector

with low precision. We used different decomposition schemes

to build the linear detector based on the (IEEE 754) standard

in addition to user-defined precision for selected detectors.

Simulations are used to demonstrate the behaviour of several

matrix inversion schemes under reduced bit resolution. The

numerical results demonstrate improved performance when

using QRD and pivoted LDLT decomposition schemes at re-

duced precision

Index Terms— Massive MIMO, OFDM, Multipath Fad-

ing, Low Precision Detection, Fixed Point Representation,

Linear Receivers.

1. INTRODUCTION

Massive MIMO systems have become a key technology for

future generations of wireless communications. Research in

such systems is fuelled by the increased data rate require-

ments of modern multimedia applications. One of the major

challenges in massive MIMO transmission is the increase in

the computational complexity at the receiver due to the high

number of receiving antennas, especially when using sophis-

ticated non-linear demodulation schemes such as successive

interference cancellation and sphere detectors. On the other

hand, linear detectors require fewer operations without sig-

nificantly compromising performance. Past researches [1, 2]

have been conducted to show the behaviour of the MIMO

system with few antennas at both sides (4x4) using MMSE

utilizing a QR decomposition (QRD) detector in a coded sys-

tem with a hardware implementation. On the other hand, a

QRD based Vertical Bell Laboratories Layered Space Time

(V-BLAST) detector has been implemented in [3], which

takes the fixed point very large scale integration (VLSI) im-

plementation into consideration with 4 antennas at both the
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transmitter and receiver. In other papers, [4] implemented

the sphere detector (SD) without using any decomposition

scheme, while [5, 6] used fixed point arithmetic with QRD

and Cholesky decomposition. Furthermore, in [7, 8], differ-

ent techniques have been used with fixed point arithmetic

to implement the MIMO system as a field programmable

gate array (FPGA) system or as VLSI. Finally, a large scale

implementation for the massive MIMO receiver with fixed

point representation [9] has used on FPGA system with re-

duced complexity Neumann series expansion to reduce the

implementation complexity.

In this paper, different decomposition schemes are used

for detection in a massive MIMO-OFDM system with fixed

point arithmetic to simulate the hardware implementation.

The standard IEEE 745 double and half precision with word

length of 64 and 16 bits will be used in the simulations in

addition to a user-defined precision of 12 and 10 bits to verify

the ability of each detector.

The remainder of this paper is organized as follows. The

system model is presented in Section 2 and the MIMO re-

ceivers used are illustrated along with the required algorithms

in Section 3. The fixed-point representation is described in

Section 4 and the complexity calculations in section 5. The

hardware implementation for the best performance detector is

presented in Section 6. The simulation results are then shown

in Section 7 and conclusions are drawn in Section 8.

2. SYSTEM MODEL

In this paper, the uplink M × N MIMO-OFDM system de-

picted in Fig. 1 is considered, where N and M represent the

number of transmitting and receiving antennas, respectively,

with M >> N . After OFDM demodulation, i.e. removing

the cyclic prefix (CP) and performing the FFT operation, the

received signal can be given as

xn = Hnsn +Wn, (1)

where Xn ∈ C
M×1 are the received signal samples in fre-

quency domain, sn ∈ C
N×1 are the transmitted informa-

tion symbols that are modulated using 16 Quadrature Am-

plitude Modulation (QAM), Hn ∈ C
M×N is the channel ma-

trix in frequency domain for the n-th FFT sub-carrier, where
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n = 1, 2, · · · , NFFT , and finally, Wn ∈ C
M×1 is the FFT of

the additive white Gaussian noise (AWGN) samples in time

domain. The detected information symbols are obtained us-

ing

ŝn = H
†
nXn, (2)

where H
† denotes the pseudoinverse of H if M 6= N and

H
† = H

−1 if M = N . It is worth noting that the index n
will be removed from the subsequent equations to maintain

simplicity. We further assume that signals propagate through

frequency selective fading channels that are not time selective

over the OFDM symbol duration.
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Fig. 1. Massive MIMO-OFDM Transceiver.

3. MIMO DETECTORS

The aim of the MIMO detector is to recover the transmitted

symbols, ŝ, with the lowest probability of error by utilizing

the lowest level of precision in the receiver using different de-

composition schemes. This has been motivated by the need to

reduce the number of bit representations required in the detec-

tion of the massive MIMO system in order to reduce the hard-

ware implementation and power consumption requirements.

The number of operations required by these detectors can be

very large and their computational complexity cost will be

very high if implemented with double or single precision rep-

resentation.

3.1. Zero Forcing (ZF) Detector

The matrix inversion method used here is the iterative Moore-

Penrose pseudo inverse method [10] that has the advantage

of reduced complexity detection compared to other types of

MIMO detectors. This procedure is illustrated in Algorithm

1 and depends on successive steps to calculate the inverse of

rank N − 1 to the matrix of rank N . This in turn reduces

the complexity of calculations as described later in this paper.

The general ZF equation can be written as

H
−1

ZF
= (HH

H)
−1

H
H, (3)

where the term (HH
H) represents the Gram matrix, which is

a symmetrical positive definite square matrix. Accordingly,

Cholesky, LU and LDLT factorization can be used to imple-

ment the inverse of these matrices in addition to a Neumann

approximation.

Algorithm 1 : Zero Forcing

1: procedure Ainv = pinv(A)
2: set k = 1
3: Ak = ak

4: A†
k
= (AH

k Ak)
−1AH

k

5: for k ← 2 to N do

6: ck = (I −Ak−1A
†
k−1

)ak

7: γk = aH

k (AH

k−1)
†A†

k−1
ak

8: bk =

{

c†
k
, if ck 6= 0,

(1 + γ)−1aH

k (AH

k−1)
†A†

k−1
, if x = 0.

9: A†
k
=

[

A†
k−1
−A†

k−1
akbk

bk

]

10: end for

11: Ainv ← A†
k

3.2. Gram Matrix Based Detector

In this MIMO detector, the LU, Cholesky, and LDLT factor-

ization techniques are used to calculate the Gram matrix in-

verse. We will use this detector to investigate the effect of

these decomposition schemes on the performance of the fixed

point MIMO detector. Algorithm 2 was used in the simulation

with fixed point design to compare the performance of these

detectors. Since all of these detectors involve a triangular ma-

trix inverse, a block matrix inverse procedure (Tri inv) was

used to reduce the complexity of inversion to the one-half of

the full matrix inversion complexity.

Algorithm 2 : Gram matrix inverse

procedure Ainv = Gram inv(A, ′option′)
if (LU ← option) then

A = LU ,
Linv = Tri inv(L, ′Lower′) ,
Uinv = Tri inv(U, ′Upper′) ,
Ainv = UinvLinv ,

else if (Cholesky ← option) then

A = LLH ,
Linv = Tri inv(L, ′Lower′) ,
Ainv = (Linv)

HLinv ,
else if (LDLT ← option) then

A = PLDLHPH ,
Linv = Tri inv(L, ′Lower′) ,
Dinv = diag(1./diag(D)) ,
Ainv = PHLH

invDinvLinvP ,

end if

Return Ainv

3.3. Neumann series expansion

One of the most well-known method that is used to determine

the matrix inversion with reduced complexity is the Neumann

series expansion [11]. If matrix A can be written such that

limn→∞(I −A)n = 0, then it can be decomposed into a di-

agonal matrix D, which represents the main diagonal of ma-

trix A, and matrix E = A−D with the rest of the matrix A
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elements. To illustrate this, matrix A can be written as

A = D+E, (4)

A
−1 =

∞
∑

n=0

(

−D
−1

E
)n

D
−1 . (5)

The inverse using this method will depend mainly on the

choice of n, which represents a factor used to control the

complexity of inversion. In previous studies [9, 11, 12], the

limit in selecting n was n = 1, 2, and 3 with large matrix size.

The increase in the receiver diversity in the aforementioned

system improves the system performance at low values of n.

3.4. QR Factorization based Detector (SIC)

The QR decomposition is used here as a successive interfer-

ence cancellation (SIC) with the modified Gram-Schmidt pro-

cedure, in which matrix Q ∈ C
M×N and the upper triangular

matrix R ∈ C
N×N [13]. The transmitted signal here can

be recovered by using Algorithm 3 which will first multiply

the received signal by the Hermitian of the orthonormal ma-

trix Q. Then, the back subsitution procedure reconstructs the

transmitted streams completely in N steps.

Algorithm 3 : QR-SIC

1: procedure ŝ = SIC(H,x)
2: QR← H

3: y = QHx = Rs+QHn

4:
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,

5: ŝN =
yN
rNN

,

6: ŝN−1 =
yN−1 − rN−1N ŝN

rN−1N−1

,

7:
...

8: ŝ1 =
y1 − · · · − r1N ŝN

r11
.

9: Return ŝ.

4. FIXED POINT REPRESENTATION

The aim of this paper is to show the performance of different

decomposition schemes used in MIMO detectors to equalize

the channel effects. The fixed point calculations are applied to

the output of the FFT of the channel matrix and the received

signal in addition to the decomposition schemes above to sim-

ulate the behaviour of the implemented MIMO detector.

The standard IEEE 754 precision can be divided accord-

ing to Fig. 2 into half, single, double and quadruple preci-

sion [14]. The first three of the latter are the most popular

types and can be represented using

X = (−1)
s
(1 +

f
∑

i=1

bf−i2
−i)2e−z. (6)

where s is the sign, and e, f and z are the exponent, fraction

length and the zero-offset for that number, respectively. The

zero-offset equals to z = 2e−1 − 1, which is 1023 and 15 for

double and half precision, respectively. The user-defined pre-

cision enables the use of different levels of accuracy depend-

ing on the required word length to be used. A word length

of 12 bits and 10 bits were used to verify the performance of

each detector at a reduced precision detection.

FractionExponent
Sign

s

Word Length, w

fe

Fig. 2. Numbers representation with fixed point arithmetic

5. COMPLEXITY ANALYSIS

An approximate calculation that depends on gaxpy algorithm

[15] is introduced here to calculate the complexity required

by each MIMO detector. According to this algorithm, the

number of operations is a general expression used to identify

any mathematical operation. Referring back to the methods of
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Fig. 3. Complexity calculations required by each method.

MIMO detection illustrated in Section 3, the implementation

of the ZF-MIMO detector used in this paper has a complex-

ity of O(9M + 2MN(N − 4)) operations, which is thus a

reduced complexity approach to find the Moore-Penrose ma-

trix inversion compared to the traditional ZF implementation.

The MIMO detector based on the Gram matrix inverse were

implemented using three different decomposition schemes to

compare their individual performance. Firstly, the Cholesky

implementation requires in total O(2N2M + 2N3 + NM)
operations to implement the MIMO detector including calcu-

lations of the triangular matrix inverse. The second is the

LDLT-based MIMO detector requiring O(N2(2M + 2) +
N(M + 1) + 3N3) operations to be implemented as it re-

quires a diagonal matrix inverse in addition to the lower trian-

gular inverse. The third Gram matrix-based MIMO detector

is LU-factorization, which requires calculating the triangular
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Method M = 20 M = 50 M = 100

ZF 2580 6450 12900

Cholesky 6200 12500 23000

LDLT 7410 13710 24210

LU 6867 13167 23667

QR 4300 10600 21100

Neumann, n = 3 5630 11930 22430

Neumann, n = 5 11050 17350 27850

Table 1. Operations required by each method at N = 10 trans-

mitters and M = 20, 50 and 100 receivers.

inverse twice and takes O(N2(2M + 16N/6) + NM) op-

erations. The QRD has been used as a successive interfer-

ence cancellation procedure with backward substitution, and

this requires O(N2(2M + 1) + NM) operations. Finally,

matrix inversion with the Neumann series expansion needs

O(N(3+M)+2N2(2+M)+N3) operations, when n = 3
and requires O(5N + 8N2 + 6N3 + 2N2M + NM) oper-

ations for n = 5. The numbers of operations required in the

simulations are presented in Table. 1 and Fig. 3 with different

receive antennas and at N = 10 transmitters.

6. HARDWARE VERIFICATION

The hardware implementation is the final step in every sys-

tem design to verify the results obtained. Different methods

have been used to generate the hardware description language

(HDL) code are used in the design of the field-programmable

gate arrays (FPGA). The system generator with logical oper-

Fig. 4. Top level block diagram of the QRD-SIC massive

MIMO receiver.

ations is one method that can represent any system as a com-

bination of logic gates. For example, the 2×2 MIMO receiver

design using Cholesky inversion and the sphere decoder has

been implemented using the system generator method [16].

Another high level design method to generate the HDL code

uses mathematical instead of logical operations such as multi-

plication, division, subtraction and addition to design the sys-

tem. The SIC design for the 50 × 10 MIMO receiver can be

seen in Fig. 4 and the expanded version inside one arbitrarily

chosen unit of the SIC procedure is presented in Fig. 5.

Fig. 5. In depth sub-unit of the back substitution block.

7. SIMULATION AND RESULTS

The performance of the MIMO detectors will be affected by

the level of error resulting from calculating the matrix inver-

sion in the methods above with reduced precision. This will

result in degradation in the bit error rate (BER) with respect to

the signal to noise ratio (SNR) as the precision decreases. The
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Fig. 6. System performance at double and half precision with

N = 10,M = 100.

simulations here assume N = 10 transmitting and M = 100
receiving antennas as shown in Fig. 6 and Fig. 7 to simulate

a massive MIMO scenario. Comparing the performance of

these detectors at double and single precision will give simi-

lar performance since the error resulting from the calculations

remains small. As the precision of the calculations decreases

to half precision, the performance of the Neumann approxi-

mation will no longer be useful in calculating the matrix in-

version. The performance of the LU detector will degrade

enormously due to the large number of operations required

by this detector. In comparison, the other detectors will have

no major effect on performance at half precision detection, as

illustrated in Fig. 6. To fulfil the requirements of hardware
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implementation, the calculations of the detector are made at

below the standard IEEE 754 representation in order to min-

imize the required bit representation. In Fig. 7, the perfor-

mance of the best detectors is presented utilizing user-defined

representations with word length w = 12 and w = 10. Ac-

cording to this simulation, the QRD-SIC detectors exhibit the

best performance compared to the other detectors, followed

by the LDLT detector. It is worth noting that in the legend,

the triplet (w, e, f) indicates the word length, exponent and

fraction, respectively.
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Fig. 7. System performance at a reduced precision with N =
10,M = 100.

8. CONCLUSION

This paper has presented a comparison of different linear

massive MIMO detectors implemented using matrix decom-

position schemes. The simulation results have suggested that

at reduced precision with word length less than 12 bits, the

performance of QRD and LDLT decompositions outperform

that of the other schemes such as Cholesky, LU, and ZF

techniques. Furthermore, the complexity calculations of the

QRD-SIC detector along with its enhanced performance at

fixed point arithmetic have promoted this detector to be used

in the hardware implementation of the MIMO detector. Fi-

nally, matrix inversion using the Neumann expansion has a

limited application in fixed point expression since it shows

reduced performance at IEEE 754 half precision and below.
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