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ABSTRACT

Following speech on TV or radio in the presence of interferers
is sometimes challenging, in particular for the elderly and the
hearing-impaired. To evaluate the performance of speech en-
hancement methods for such scenarios, we consider a stereo
mixture composed of a speech signal and interfering sources.
We apply different approaches to separate the mixture into
two components, where the first component contains mainly
speech (the desired signal) and the second component con-
tains the rest of the mixture. An improved stereo signal is con-
structed by recombining these components such that speech
gets emphasized with respect to the rest of the mixture and at
the same time the amount of artifacts is kept to a minimum.
Listening tests and objective measures show that the center
extraction approach is in general the most effective, although
it is sensitive to speaker positioning.

Index Terms— speech enhancement, center extraction,
noise suppression, direct-ambient decomposition.

1. INTRODUCTION

Understanding speech in typically problematic scenarios
when the recordings are corrupted by relatively loud inter-
ferers represents a common problem in TV and radio broad-
casts. Particularly for the elderly, the hearing-impaired and
the non-native speakers this represents a big inconvenience.
The current paper examines different types of algorithms for
speech enhancement, with the aim of adding insight on how
well each algorithm improves the listening experience in such
difficult cases.

The objective of this paper is to investigate the suitability
of different classes of methods for the scenario described
above. This is particularly important since by being devel-
oped as different strategies, it is not clear how the methods
compare in quality and how sensitive they are to differences
between scenarios. For the purpose of this evaluation we nar-
row down typical problematic scenarios to three conditions:
i. speech recorded in reverberant environments, ii. speech
recorded in noisy environments and iii. speech recorded in
the presence of interferers panned off-center (different types
of interferers panned to either side of the sound scene). In
the following we consider that the input stereo mixture is
composed of speech (the desired signal) and background (the
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rest of the mixture), where the background consists of all
possible types of interferers, i.e., musical instruments, noise,
other non-speech sounds or a mixture thereof.

For reverberant speech recordings, there already exist
a few algorithms that estimate the direct and ambient (dif-
fuse) signals, which are then used to enhance loudspeaker
outputs [1], [2], [3]. For our investigation we chose [2],
where the diffuse sound is obtained by least-squares estima-
tion. This allows to generate statistically independent diffuse
signals which correspond to independent loudspeaker signals.

For enhancement of noisy speech recordings, the typi-
cal problematic scenarios for audio-visual media are those
where the signal-to-noise ratio (SNR) is relatively low or
where the present speech components are rather weak. We
therefore chose the improved minima controlled recursive
averaging (IMCRA) [4] as noise estimation method due to its
robustness under such adverse conditions.

For speech recorded in the presence of interferers from
the side, we assume that speech is panned only to the center,
while the interferers are panned predominantly off-center. For
such a scenario, the aim is to attenuate the off-center compo-
nents of the signal. In [5], [6] this is achieved by employ-
ing spectral weights based on power ratio functions, while
in [7] the spectral weights are computed based on similarities
between the channels of the stereo signal. For our tests we
chose [7] due to its implementation simplicity and its efficient
estimation of center and off-center components.

In this paper we chose separate algorithms to extract
speech in three scenarios we identified as problematic. Given
an input stereo mixture, we extracted the desired speech, as
well as the background signal using the proposed algorithms.
Following this, we computed an output signal as an additive
mixture of the speech and the attenuated background signal.
The attenuation was manually controlled such that the num-
ber of artifacts was kept to a minimum. The performance
of the proposed algorithms was evaluated both subjectively,
by means of listening tests and objectively, with commonly
used perceptually-oriented measures. The results showed that
the center extraction method in general outperforms the other
methods. However, the method is sensitive to speaker posi-
tioning and thus leads to less improvement in case the speech
is panned off-center.
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2. SIGNAL MODEL

We consider a stereo input signal y[n] containing speech cor-
rupted by different types of background interferers:

y[n] = x[n] + bn], (D
where y[n] = [y1n] yon]]7. Here x[n] = [a1[n] a2[n]]”
and b[n] = [b1[n] bz[n]]’ represent the stereo speech signal

and the stereo background signal, respectively.

Our aim is to create an enhanced stereo mixture y ;[n] in
which the interferer is attenuated by a factor ¢, where ¢ €
(0,1). Since the true speech and background components are
not available, we scale the corresponding estimated signals:

yeln] =X[n] + ¢ bln], )

where X is the estimated speech signal and b is the estimated
background signal.

The estimation of the speech and background components
is done in the time-frequency domain by applying a short-
time Fourier transform (STFT) to the input mixture y[n] such
that Eq. (1) becomes:

Y(m, k) =X(m, k) +B(m, k), 3)

where m and k are, respectively, the frequency and time in-

dices. An estimate of the speech signal X can then be obtained
by applying spectral weights G,,em0q to the input mixture Y:

-~

X(m, k) = Guetmoax(m, k) - Y(m, k). )

The spectral weights Gemoqx are computed by processing
the input mixture Y with a speech enhancement method. Each
method aims at suppressing a specific case of interferer, while
retaining as much as possible of the speech components.

For the noise suppression and center extraction methods,
the two estimated signals are obtained by magnitude modifi-
cations of the input mixture’s spectra. Therefore, B is eas-
ily computed as the difference between mixture Y and the
estimated speech signal X. For the direct-ambient decom-
position method, the estimated speech and background sig-
nals are obtained by combining the two channels of the in-
put mixture. That is, the two estimated components involve
not only magnitude modifications of the mixture Y(m, k),
but also phase modifications thereof. The estimated back-
ground B is in this case obtained by weighing the input mix-
ture Y(m, k) with the spectral weights Gemoqp such that

B(m, ]{?) = Gme,hod,g(m, k) . Y(m, k) R

The estimated speech and background components X and
ﬁ, respectively, are then transformed back to time domain by
using an inverse short-time Fourier transform (ISTFT) and re-
combined with a factor ¢ (see Eq. (2)), which results in the
desired enhanced mixture y ;;[n].

3. SPEECH ENHANCEMENT ALGORITHMS

In this paper we aim to evaluate and compare methods which
allow us to separate an input stereo mixture into a speech
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component and a background component containing the un-
wanted interferer(s). We mainly distinguish between three
different classes of methods: center extraction, noise suppres-
sion and direct-ambient decomposition, which are briefly de-
scribed in the following.

Center extraction methods aim to extract the signal at the
center of the sound scene. Television talks often have speech
played from the center of a stereo frame if the TV has a 3-
channel frontal loudspeaker array [8]. When the camera cap-
tures a scene with more talkers, one can easily map the speech
more to the left/right according to the position of the speak-
ers in the scene. However, if the camera switches to only one
talker positioned in the center of the screen, it would feel un-
natural to the viewer if the speech would still come from the
left/right because he would expect the audio cues to match
the visual ones. That is why such speech signals are typically
mapped to the center channel.

The noise suppression methods aim at constructing a sig-
nal where noise is attenuated. This typically fits a scenario
where speech is difficult to understand due to a high level of
noise in the recording. The speech signal can be extracted
from the initial mixture by first estimating the noise. Then,
based on this estimate, spectral weights for filtering the noisy
components out of the initial mixture are derived. Thus the
final output is a speech signal with less noisy interference.

The direct-ambient decomposition methods aim at atten-
uating the diffuse components of a mixture, while the direct
ones remain unchanged. Diffuse sound is typically composed
of a very large number of sound reflections in an enclosed
space, which have equal spatial distribution and equal inten-
sity at any location in this space [9]. By removing/attenuating
the diffuse part of the mixture, we obtain a signal which is
less distorted by the room impulse response.

3.1. Center Extraction

The center extraction algorithm extracts the signal compo-
nents panned to the center of a sound scene by exploiting the
magnitude similarities between the left and right spectra of
the stereo recording of the sound scene [7]. The speech esti-
mate is thus obtained by multiplying the input mixture by the
spectral weights G¢ g, which are derived from the spectra of
the side signal S(m, k). S(m, k) is computed as the absolute
value of the difference between the left and right channel of
the mixture:

S(mv k) = |Y1(m7k) 7Y2(ma k)| (5)

To obtain a center signal with a certain degree of attenuation
of the side components, we subtract a portion of the side chan-
nel from each channel of the mixture:

Ye,i(m, k) = |Yi(m, k)| — w|S(m, k)|, (6)

where ¢ € {1,2} is the channel index of the input signal and
w is a weighting factor which indicates how much of the side
signal is subtracted. In the following, time and frequency in-
dices are discarded when possible for brevity.
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Using Y¢ ;, we can construct a spectral energy weighting
function to extract the center components:

2
Yo,i
Gl = (ﬁ) » Yo 20
0, Yo, <0.

(N

In addition, we limit the amount of attenuation between g,
and g .. in order to avoid too large amplifications or attenua-
tions:

Gga Emin < G; < Emax
e Gh>
GCE7X,7; _ gmdx ;L gmax (8)
Emin> Gi < Emin
07 G; = Zmin-

The final speech and background estimates can then be com-
puted as X = G¢cgxY and B =Y — X, respectively.

3.2. Noise Reduction

The noise reduction method we selected to use in this paper
is based on the improved minima controlled recursive averag-
ing (IMCRA) [10], [11]. It was chosen due to its efficiency
in typically difficult noise estimation conditions such as in-
put signals with low signal-to-noise ratio (SNR), weak speech
components or nonstationary noise environments.

The IMCRA noise estimation method is an enhanced ver-
sion of Cohen’s previously proposed MCRA method [4]. The
modifications include minimum tracking for active speech, a
bias compensation factor and a better speech presence proba-
bility estimator. In IMCRA, the noise estimates are obtained
by averaging over previous spectral power values of the mea-
sured noisy signals. This is done by means of a time-varying
frequency-dependent variable which gets updated according
to the speech presence probability. The smoothed spectral
power values are then weighted by a constant factor which
compensates for the bias when speech is absent.

The noise signal power spectrum ), is smoothed by:

Na(m, k4+1) = ag(m, k)Xg(m, k)+[1—aq(m, k)]|Y (m, k)|?
©)
where the term ¢y denotes the time-varying frequency-
dependent smoothing factor and can be computed as:
aqg(m, k) = ag(m, k) + (1 — aqg(m, k))p(m, k).  (10)
Here a4 is a smoothing constant between 0 and 1, while
p(m,k) = P(Hi(m,k)|y(m,k)) is the conditional speech
presence probability. H; (m, k) represents the hypothesis that
speech is present at frequency bin m and time frame index k,
while y(m, k) is the a posteriori SNR [10].

After calculating the estimated noise signal spectrum \g,
we derive the spectral weights Gy r for extracting the speech
components by means of spectral subtraction. The spectral
subtraction approach we use is based on the multiband spec-
tral subtraction in [11], which we apply, in contrast to the

2095

original publication, over all frequencies in a time frame. As
a first step, the segmental SNR,., is computed as:

_ Yl
seg — —
1V Adll2

which is required for determining the oversubtraction param-
eter « (see [11]). We can then calculate the noise subtraction
gains for recovering the speech components as:

oo (Y= alRa\
NR,X |Y|2 .

SNR 1)

12)

3.3. Direct-Ambient Decomposition

For the direct-ambient decomposition, we chose the spatial
decomposition method proposed by Faller [2]. The method is
perceptually motivated and involves separating the direct and
diffuse sound components by least-squares estimation. The
advantage of the approach is that it results in statistically in-
dependent diffuse signals, which can be used to generate in-
dependent loudspeaker signals.
The input stereo signal is modeled as follows:

Yi(m, k) = S(m, k) + N1(m, k)

Yo(m, k) = A(m, k)S(m, k) + No(m, k), (13
where S represents the STFT of the direct sound component
mapped to a certain direction by factor A and N; and N,
correspond to the STFTs of the independent lateral reflection
components. In [2] it is assumed that the lateral reflection
components have equal power (Py = Py, = Pn,).

Based on Eq. 13 and the previous model assumptions, we
construct a system of equations for Ps, Py (short-time power
estimates of S and V) and A, whose solution is used to com-
pute the required weighting factors for the direct and diffuse
components:

Py, = Ps + Py
Py, = A’Ps + Py (14)
P — aPg

1/Py1Py2 ’

Here @ is the normalized cross-correlation between the left
and the right input channel. The weighting factors w; . . . wg
are then computed together with post-scaling factors cg, ¢y,
and cy, [2]. These post-scaling factors ensure that the powers
of the estimated direct and diffuse components are equal to
P, and Py, respectively. The estimated direct and ambient
components can then be obtained as:

§ = Cs(’LUlYl —+ w2Y2)
-
]/\72 = CN2 (’LU5Y1 + ’LU6Y2),

eny (wsY1 + waYs) (15)

where m and k are omitted for sake of simplicity. The fi-
nal speech and background estimates become X = [S AS]|
and B = [N; Ny respectively. Note that since the left and
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SAR SDR SIR PESQ

C (dB) 6dB | 9dB | 12dB | 6dB | 9dB | 12dB | 6dB | 9dB | 12dB | 6dB | 9dB | 12dB
CE 0° | 16.0 | 13.1 114 15.6 | 12.7 11.0 | 27.7 | 244 | 226 43 4.0 3.7
—30° | 157 | 117 8.8 152 | 11.1 8.1 269 | 232 | 207 43 32 3.4

NR 0 | 157 | 129 11.3 152 | 122 105 | 245 | 20.8 18.7 4.3 4.0 3.7
—30° | 163 | 13.0 10.7 16.2 | 12.8 10.6 | 335 | 302 | 28.1 3.6 42 3.8

DAD 0° | 108 | 79 5.8 10.6 | 7.7 5.6 23.7 | 22.1 20.7 4.1 35 32
—30° | 12.8 | 10.5 8.8 11.1 8.4 6.6 16.7 | 13.3 11.6 3.5 32 2.8

Table 1. Performance of the center extraction (CE), noise reduction (NR) and direct-ambient decomposition (DAD) methods in
terms of Signal-to-Artifacts Ratio (SAR), Signal-to-Distortion Ratio (SDR), Signal-to-Interference Ratio (SIR) and Perceptual

Evaluation of Speech Quality (PESQ) grade.

right spectra of the mixture are scaled and added together (see
Eq. 15), this method results in phase modifications of the in-
put mixture.

4. PERFORMANCE EVALUATION

4.1. Test data

For the evaluation of the proposed speech enhancement meth-
ods, we created 8 different mixtures of speech and back-
ground (BG) signals. As speech we used the female and male
German speech signals from the EBU SOAM CD [12], which
were then panned to the center (0°) and to the left (—30°),
resulting in 4 different speech signals. For the background we
used 2 excerpts of cheering crowd and dense applause from
the Series 6000 General Sound Effects Library [13]. The
choice of the background signals was motivated by typical
problematic scenarios in audio-visual media. We thus ob-
tained a total of 8 mixtures of speech and background signals,
all sampled at 48kHz.

100 F - tiaf o ta] e e el e e e e
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| ——— MIX —— NR —— Hidden ref.

£ B0V BGHEY, 5320 562 G\ D 6L MG 3320 32D j@ g

Fig. 1. MUSHRA results for center extraction (CE), noise re-
duction (NR), direct-ambient decomposition (DAD) and the
original mixture (no BG attenuation) (MIX) for 8 mixtures
(F: female German, M: male German, BG1: cheering crowd,
BG2: dense applause) and 2 different speech pannings (c:
center, I: left). The last 2 columns show the averaged results
over all items panned to the center and to the left, respectively.
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4.2. Objective Measures

For the objective evaluation we calculated the Signal-to-
Artifacts Ratio (SAR), the Signal-to-Distortion Ratio (SDR)
and the Signal-to-Interference Ratio (SIR) as defined in [14],
as well as the Perceptual Evaluation of Speech Quality
(PESQ) grade [15]. We tested the proposed speech en-
hancement methods for different attenuation levels C of the
background: 6dB, 9dB and 12dB. Here C' = —10log,c,
where c is the background attenuation factor used in Eq. 2.
The reference signal used for the comparison was a mixture
of perfectly estimated speech and background signals, where
the background was attenuated by the same values listed
above. The results of the tests are shown in Table 1. We
notice that the SAR, SDR and SIR decrease with increasing
attenuation. This is often true also for PESQ, except for some
cases where the source is panned to the left.

The reason for the decrease of the SAR, SDR and SIR
measures for higher background attenuation is explained in
the following. In general, none of the speech enhancement
methods results in a perfect estimation of the speech or back-
ground signals. That is, an estimated source may contain
components corresponding to the other source or may miss
some segments, which were assigned to the incorrect source
by the speech enhancement algorithm. In addition, distor-
tions and artifacts can also appear. On one hand, by mixing
the separated signals with no attenuation, the imperfections of
the speech enhancement algorithms are not noticed because
the two signals add to the exact original signal. On the other
hand, when attenuating the background signal by a certain
factor and adding it to the speech signal, the imperfections
become more obvious. As a result, the audio quality of the
enhanced mixture decreases the more the background signal
is attenuated, which is consistent with the results in Table 1.

In general, the largest values for all measures are ob-
tained for the center extraction (CE) and noise reduction
methods (NR) for 6dB background attenuation. We note that
CE performs best for a source at 0°, while NR algorithms
are better for a source at —30°, which is to be expected since
CE does not work so well for panned sources. Among all
methods, the direct-ambient decomposition (DAD) is ranked
last in performance. A particularly interesting behaviour is
noticed when the speech source is panned to the left, where
PESQ doesn’t display a monotonically decreasing behaviour
for CE and NR, but improves sometimes with increasing
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attenuation. This suggests the necessity of performing sub-
jective listening tests to better measure the quality of the
proposed speech enhancement methods.

4.3. Listening Test

To evaluate the subjective audio quality of the enhanced mix-
tures, we carried out a MUSHRA listening test [16]. For the
MUSHRA test, we chose to investigate closer only the case
where the background was attenuated by 9dB. Our choice was
motivated by the fact that for 6dB, the speech enhancement is
less obvious, while for 12dB, the quality of the mixture de-
grades too much due to the fact that there is less masking for
the artifacts resulted from the speech enhancement algorithm.
A total of 20 listeners evaluated the proposed methods for
the same 8 mixtures we analyzed in the objective evaluation.
The test consisted of the following conditions: a lower anchor
(3.5kHz low-pass version of the original mixture), a hidden
reference (perfectly separated speech and BG with 9dB atten-
uation of the BG), the 3 mixtures created with our proposed
methods and the original mixture (no BG attenuation). We
asked the listeners to give an overall audio quality grade for
each mixture taking into consideration the audio quality of
both the speech and the BG with respect to the reference.

The means and the 95% confidence intervals can be seen
in Figure 1. We notice that for the case when the source is
panned to the center, CE was preferred, with ratings of good
to excellent. However, for the case when the source is panned
to the left, NR was graded better or almost as good as CE.
Interestingly, the users graded the DAD often nearly as low
as the unattenuated original mixture. This is due to the fact
that for DAD the estimated speech signal contains a lot of BG
components. Since only the BG is attenuated, this leads to
unpleasant distortions and artifacts in the resulting mixture,
which were perceived as less pleasant by the listeners.

5. CONCLUSIONS

In this paper we evaluated different speech enhancement
methods for stereo signals which contain a mixture of speech
and undesired interferers. The proposed methods are based
on the decomposition of the stereo input into a speech and
a background component, followed by the remixing of the
speech with an attenuated version of the background. We
investigated three different methods for the decomposition
and three different levels of background attenuation.

According to the results of both objective and subjective
tests, we can conclude that the center extraction and the noise
reduction methods perform quite well under the right assump-
tion (source panned to center and predominantly noisy back-
ground, respectively). The direct-ambient decomposition was
found to be less suitable since it was graded roughly as low as
the mixture with no background attenuation. In addition, the
SAR, SDR, SIR and PESQ objective measures showed that
in general the quality of the mixture deteriorates as the back-
ground attenuation becomes larger, in particular when the at-
tenuation is larger than 9dB.
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