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ABSTRACT
Recently, we proposed approximate least squares (ALS), a
low complexity approach to solve the linear least squares
problem. In this work we present the step-adaptive linear
least squares (SALS) algorithm, an extension of the ALS
approach that significantly reduces its approximation error.
We theoretically motivate the extension of the algorithm, and
introduce a low complexity implementation scheme. Our
performance simulations exhibit that SALS features a practi-
cally negligible error compared to the exact LS solution that
is achieved with only a marginal complexity increase com-
pared to ALS. This performance gain is achieved with about
the same low computational complexity as the original ALS
approach.

Index Terms— least squares, approximation, iterative al-
gorithm, complexity, approximate least squares.

1. INTRODUCTION

Linear Least Squares (LS) estimation is an important ap-
proach in many areas of Signal Processing. Examples of such
areas are localization [1, 2] and positioning [3], robotics [4]
and sensor registration [5], power and battery applications
[6, 7], biomedical applications [8, 9], or image processing
[10, 11]. For the linear LS problem the following system
model is assumed:

y = Hx + n, (1)

where H is a knownm×p observation matrix (m ≥ p) that has
full rank p and y is a known m× 1 vector that is typically ob-
tained from measurements. x is an unknown p × 1 parameter
vector that is to be estimated and n is an m × 1 noise vector.
The versatility of the LS approach is due to the fact that the
statistical properties of n need not to be known. The solution
x̂LS of the LS problem can be calculated as

x̂LS = (HTH)
−1HTy. (2)

The term (HTH)−1HT is often called pseudo-inverse of H
[12]. Many signal processing applications demand solving
the LS problem in realtime. Such realtime implementations
are usually done using fixed point precision allowing only a

limited number of arithmetic operations. Using direct solu-
tions – often called batch solutions [13]– for x̂LS (e.g. by the
pseudo inverse as shown above or QR decomposition based
methods [12]) is often unfeasible in practice due to their com-
putational complexity and their high numerical precision re-
quirements. Many algorithms, e.g. based on the QR decom-
position that are considered “low complexity” in numerical
mathematics [12] are often unfeasible for realtime signal pro-
cessing applications. Other algorithms, e.g. such as the one
described in [14], aim at solving the normal equations that
require an additional computational overhead for calculation
and can lead to additional numerical problems. For realtime
applications, often an approximate solution using a low num-
ber of required multiplications as well as simple hardware ar-
chitectures for implementation is preferred over an exact so-
lution obtainable only with a huge computational effort. Our
aim was to develop an efficient method that can work directly
on the matrix H without requiring the calculation of the nor-
mal equations.

As an alternative to batch solutions, iterative methods
such as the iterative least squares (ILS) [12] approach can be
used. This method utilizes the gradient

∇J(x̂) = 2HTHx̂ − 2HTy (3)

of the squared error sum

J(x̂) =
m

∑
i=1

(hT
i x̂ − yi)

2
= (Hx̂ − y)

T
(Hx̂ − y). (4)

Here x̂ is an arbitrary estimation vector (not necessarily the
best), hT

i is the ith row of H and yi is the ith element of y,
respectively. The above gradient is used in ILS for a steepest
descent approach to find the minimum of J(x̂) by iteratively
calculating

x̂(k)
= x̂(k−1)

− µ∇J(x̂(k−1)
), (5)

with the iteration step width µ. An optimal value of µ can be
found e.g. via the singular values of H [12]. Rewriting (5) in
the form

x̂(k)
= x̂(k−1)

− µ
m

∑
i=1

2hi(h
T
i x̂(k−1)

− yi) (6)
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indicates the required complexity of this approach. The above
equation allows interpreting the gradient as a sum of partial
gradients

di(x̂
(k−1)

) = 2hi(h
T
i x̂(k−1)

− yi). (7)

The calculation of a partial gradient requires 2p multiplica-
tions, so per ILS iteration 2pm + 1 multiplications are re-
quired. To reduce the complexity we proposed to alterna-
tively use a different approach that we call approximate least
squares (ALS) [15]. This approach is based on an approxi-
mation of the gradient of the ILS by using only one partial
gradient per iteration. As we showed in [15] and describe be-
low, if no noise is present, ALS converges to the exact param-
eter vector x. If noise is present, ALS shows a higher average
error than ILS. The aim of this work is to present SALS –
an advanced ALS approach – featuring a significantly lower
estimation error than ALS without significantly increasing its
computational complexity. We first describe the principles
of ALS in the next section. We then motivate the SALS algo-
rithm based on the theory of ALS. We then describe the SALS
algorithm in detail and furthermore show a performance com-
parison between ALS and SALS.

2. APPROXIMATE LEAST SQUARES

Instead of calculating the sum in (6), ALS uses only a single
partial gradient per iteration:

x̂(k)
= x̂(k−1)

− µ2hk⌝(h
T
k⌝x̂

(k−1)
− yk⌝). (8)

Here the operator “ ⌝” is defined such that for a positive nat-
ural number i: i⌝ = ((i−1) mod m)+1. For simplicity we do
not write the dependence on m in the operator. In this work
the divisor in the modulo operation of “ ⌝” will always be the
number of rows of H. This means that if k exceeds m, the
first rows of H and the first elements of y are cyclically re-
used again. As it is described in [15], the error of ALS can be
split into two parts, one part depending on the starting error
e(0) = x̂(0) − x of the algorithm and one depending on the
noise values embedded in the measurement vector y. While
the first part converges to the zero vector (when choosing µ
appropriately as described below), the second part persists.
As we will describe below this leads to an oscillatory behav-
ior in the error e(k) = x̂(k) − x for large k. To reduce the
influence of this noise dependent part we introduced an aver-
aging in the last m ALS iterations having the effect that also
the error between x̂(k) and x is averaged over the last k itera-
tions, as shown in [15]. This leads to the overall formulation
of the algorithm as described in the following description (Al-
gorithm: ALS), where N is the number of iterations.

Although the ALS update equation (8) is arithmetically
similar to the LMS filter update equation [16], there are sev-
eral significant differences. The LMS update step uses a ran-
dom filter input vector and one sample of a desired signal as

Algorithm: ALS
x̂ALS = 0
x̂(0) = 0
for k = 1 . . .N do

x̂(k) = x̂(k−1) + µ2hk⌝(yk⌝ − h
T
k⌝x̂

(k−1)
)

if k > N −m then
x̂ALS = x̂ALS + x̂

(k)

end if
end for
x̂ALS = 1

m
x̂ALS

input, whereas the ALS update step only uses one sample yi
of the measurement vector y as input. Instead of the random
input vectors, fixed and deterministic rows of H are cycli-
cally used. A more closer connection exists to the Kaczmarz
algorithm [17], as the ALS update equation (8) can be seen
as a variant of the Kaczmarz algorithm for overdetermined
and inconsistent linear equation systems. This cyclical usage
allowed the development of the theory of ALS in a determin-
istic manner, instead of using stochastic arguments as in the
theory of LMS. The cyclical re-use of the rows of H and the
values of yi also suggests the averaging in the last m oper-
ations, which in general reduces the approximation error, cf.
[15].

3. ALS ERROR ANALYSIS

With the error vector e(k−1) = x̂(k−1) − x the ALS iteration
can be formulated as

x̂(k)
= (I − 2µhk⌝h

T
k⌝)(e

(k−1)
+ x) + 2µhk⌝yk⌝ (9)

= (I − 2µhk⌝h
T
k⌝)e

(k−1)
+ x + 2µhk⌝nk⌝ (10)

with yk⌝ = hT
k⌝x + nk⌝, and nk⌝ as the k⌝th element of n. Sub-

tracting x left and right from the equation leads to

e(k)
= (I − 2µhk⌝h

T
k⌝)e

(k−1)
+ 2µhk⌝nk⌝ (11)

= Mk⌝e
(k−1)

+∆k⌝ (12)

with Mk⌝ = (I − 2µhk⌝hT
k⌝) and ∆k⌝ = 2µhk⌝nk⌝. hk⌝ is an

eigenvector of Mk⌝ to the eigenvalue λk⌝ = (1 − 2µ∥hk⌝∥22)
because

Mk⌝hk⌝ = (I − 2µhk⌝h
T
k⌝)hk⌝

= (1 − 2µ∥hk⌝∥
2
2)hk⌝ = λk⌝hk⌝. (13)

We show in [15] that all other eigenvalues of Mk⌝ are one,
respectively. That means that at iteration k a reduction of the
error vector e(k−1) – i.e. in its 2-norm – can only be achieved
via the eigenvalue λk⌝. This eigenvalue is affected by the step
width µ as shown above. When analyzing (13), one can see
that 1 > λk⌝ ≥ 0 when

0 < µ ≤
1

2 ∥hk⌝∥22
. (14)
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The eigenvalue λk⌝ is zero when µ = 1/2 ∥hk⌝∥22.
As we also show in [15] for the noiseless case the error

e(k) converges to zero if k →∞ when

0 < µ ≤
1

2 max
i=1,...,m

∥hi∥
2
2

. (15)

Choosing the upper interval boundary

µ =
1

2 max
i=1,...,m

∥hi∥
2
2

(16)

leads to a fast decrease of the error norm [15].

4. STEP WIDTH ADJUSTMENT

Following the same arguments as above, one can see that for
the first iterations the error norm reduction is even greater
when using different values

µ = µk⌝ =
1

2∥hT
k⌝∥

2
2

. (17)

for every iteration k⌝, respectively. These values µk⌝, with
k⌝ ∈ {1 . . .m}, can be pre-calculated, adding only the mem-
ory lookup for µk⌝ to the complexity of the algorithm. If the
rows of H have non-equal 2−norms, choosing µ according
to (17) leads to larger step widths then when choosing µ ac-
cording to (16). Although these larger step widths result in
a greater decrease of the norm of e(k), they also result in an
increase of the noise influence. By rewriting (12) as

e(k)
= e(k−1)

− 2µhk⌝h
T
k⌝e

(k−1)
+ 2µhk⌝nk⌝. (18)

we observe that an increase in µ (up to the value of (17) )
has to two effects: on the one hand a greater reduction of
the previous error e(k−1) (within certain boundaries, i.e. only
along the vector hk⌝), one the other hand an increase of the
error due to the noise value nk⌝.

Fig. 1 shows a typical error behavior of ALS when using
µ according to (16). The figure shows the evolution of the
error norm over the iterations k. It also allows comparing the
error behavior when using µk⌝ according to (17) in the curve
of SALS, because SALS uses this µk⌝ in the beginning (as it
is described below). For a more detailed description of the
figure we refer to the next section.

One can see in this figure that using high values of µ is
beneficial for a fast decrease of the error norm in the begin-
ning. But it also leads to a higher final error, while using a
low value of µ leads to an opposite behavior. To reduce the
final error, an even further reduction of µ is beneficial as is
depicted by the curves of SALS. In the next section this en-
hanced approach is described in detail.

5. STEP-ADAPTIVE ALS

As a combination of both approaches we introduce the step-
adaptive ALS (SALS). For this approach we incorporated the
idea of reducing the step width with increasing k. As de-
scribed before the ALS update equation has an arithmetical
similarity with the update step in the LMS algorithm. Also for
the LMS a reduction of the step width has been proposed, e.g.
as described in [18]. However, due to the statistical deriva-
tion of the LMS, the step width reduction approaches relying
on statistical measures are not feasible for the ALS algorithm.
For this reason we developed a completely deterministic step
width reduction approach for the ALS.

When analyzing (18) one can see that if hT
k⌝e

(k−1) is large
compared to nk⌝ higher µ values (up to the value of (17) ) lead
to a reduction of the error vector norm. When hT

k⌝e
(k−1) gets

smaller with increasing k, the part influenced by noise gets
dominant - eventually preventing a further reduction of the er-
ror norm. If hT

k⌝e
(k−1) and nk⌝ were known, an optimal value

of µ could theoretically be calculated. But because these val-
ues are usually not known, such an approach is clearly unfea-
sible in practice. As an alternative we propose a practically
feasible way of adapting µ for ALS.

If one analyzes the evolution of the ALS’ error norm with
increasing k one can observe that above a certain number of
iterations the error norm shows an oscillatory behavior. This
can also be seen in Fig. 1. After a certain number of iterations,
the error norm of ALS shown in the figure seems to be peri-
odic, however, exactly speaking it is still decreasing but in a
practically negligible way. Although the actual error of the al-
gorithm is unknown in practice, a detection of the algorithm’s
oscillation phase can easily be implemented. Due to the cyclic
nature of the algorithm’s access to the rows of H and the val-
ues of y, the vector x(k) (and therefore e(k) as well as its
norm) is affected by the difference vk = yk⌝ − hT

k⌝x̂
(k−1). For

this reason, to detect an oscillation of the error norm one only
has to observe this difference at every mth iteration. If the
oscillation phase is detected, µ is reduced at every following
iteration.

Here one has to find a trade-off. If µk⌝ is reduced to
fast the corresponding eigenvalues λk⌝ are too small to re-
duce the previously accumulated noise error, while if µ is re-
duced to slow the number of iterations to obtain a desired
error increases. The algorithm summarized in the follow-
ing pseudocode (Algorithm: SALS) shows a low complexity
and high performance approach for reducing µ. Fig. 1 also
shows the evolution of the error norm of this algorithm in
the SALS curve. Here one can see the reduction of the error
norm for large k due to the reduction of µ. The results shown
in this figure have been obtained for a 100 × 10 H matrix
with random entries sampled from a [0,1] uniform distribu-
tion. Also the vector x has been sampled from the same dis-
tribution. The simulation has been done with white Gaussian
noise with a standard deviation σ = 1e−3. The figure shows
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Fig. 1: Error norms over iterations k.

the error norms ∥x̂(k) − x∥2 at each iteration k as well as the
error norm of the algorithms’ output ∥x̂ALS − x∥2, as well as
∥x̂SALS − x∥2. For simplicity the error norms ∥x̂ALS − x∥2
and ∥x̂SALS − x∥2 are depicted via horizontal lines, but we
want to emphasize the fact that both values are only available
after the last iteration of the respective algorithms.

Algorithm: SALS
x̂SALS ← 0
x̂(0) ← 0
vk ← 0
vk−m ← 1
DontReduceMu← True
for k = 1 . . .N do

vk ← yk⌝ − h
T
k⌝x̂

(k−1)

if DontReduceMu then
µ← µk⌝ according to (17)
if k⌝ = 1 then

if ∣vk − vk−m∣ < vth then
DontReduceMu← False
µ← 1

2 max
i=1...m

∥hT
i
∥
2
2

end if
vk−m ← vk

end if
else

µ← f(µ)
end if
x̂(k) ← x̂(k−1) + µ2hk⌝vk
if k > N −m then

x̂SALS ← x̂SALS + x̂
(k)

end if
end for
x̂SALS ←

1
m
x̂SALS

In the SALS algorithm, vk is compared to vk−m. If the
absolute difference between these two values is smaller than
a threshold vth, µ is first set to the (typically) lower value
(16). In the following iterations µ is then further reduced by
the reduction function f(µ). In the next section we show
simulation results for SALS using vth = 10−3 and f(µ) =

(1 − 2−⌊log2(N)⌋)µ, both found and optimized by extensive
simulations. Here again N is the number of iterations of the
algorithm. This reduction function has the advantage that it
can be performed with only one subtraction and a shift oper-
ation (the value of ⌊log2(N)⌋ can be pre-calculated). It also
ensures that the step-width is slowly reduced, allowing to re-
duce the current error while preventing the noise dependent
error to become dominant.

6. SIMULATION RESULTS

In [15] we already pointed out the significantly lower com-
putational complexity of ALS compared to iterative least
squares and sequential least squares (SLS) [13]. For ALS the
values of µk⌝ have to be calculated for (16). So the only note-
worthy overhead for SALS is to store the m values of µk⌝ and
the value ⌊log2(N)⌋, respectively, as well as the operations
required for the calculation of f(µ) per iteration. However,
this overhead might be considered negligible.

Fig. 2 shows performance results for random H ma-
trices for ALS and SALS, respectively. The entries of
these matrices have been sampled from a uniform distri-
bution out of [0,1]. Every simulation has been done for
white Gaussian noise with zero mean and standard devia-
tion σ ∈ S = {10−4,10−3,10−2,10−1,1}, respectively. Per
σ value 100 random matrices H and 100 random vectors
x (with random entries also sampled from a uniform dis-
tribution out of [0,1]) per H matrix have been simulated.
For every σ value the averages ∣∣x̂ALS − x∣∣2, ∣∣x̂SALS − x∣∣2
and ∣∣x̂LS − x∣∣2 over the simulated results have been cal-
culated. Fig. 2 shows the maximum relative increase of
ALS’ and SALS’ averaged error norms over the averaged
error norms of LS, whereas the maximization has been done

over the elements of S: rALS = max
S

(
∣∣x̂ALS−x∣∣2
∣∣x̂LS−x∣∣2

− 1) and

rSALS = max
S

(
∣∣x̂SALS−x∣∣2
∣∣x̂LS−x∣∣2

− 1), respectively.

For the simulations of matrices with 100 rows, the num-
ber of iterations N was set to 2000, while for the simulations
of matrices with 1000 rows the number of iterations N was
set to 15000. As one can see from these results, SALS shows
a significant reduction in the error norm compared to ALS.
From a practical point of view – especially when consider-
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Fig. 2: Relative average errors of ALS and SALS.
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ing a fixed point implementation where further errors are un-
avoidable – the deviation of SALS compared to LS might be
considered negligible. But it is to note that for a certain group
of H matrices, f(µ) can further be optimized which can lead
to even lower approximation errors. We furthermore want to
note that the relative increase of the averaged error norms re-
mained nearly constant for each test case over all simulated σ
values.

7. CONCLUSION

In this paper we introduced the step-adaptive approximate
least squares algorithm, which shows a significant improve-
ment of the recently proposed approximate least squares ap-
proach. We derived the SALS algorithm based on theoret-
ically justified arguments of reducing the step width of ALS
and presented a practically feasible step width reduction func-
tion. The performance results demonstrate significant gains
compared to ALS displaying the relative error norm differ-
ence between SALS and LS in the low single digit percent-
age range. This performance advantage over ALS is achieved
with about the same low computational complexity as the
original ALS approach.
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