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ABSTRACT

Recently, we proposed approximate least squares (ALS), a
low complexity approach to solve the linear least squares
problem. In this work we present the step-adaptive linear
least squares (SALS) algorithm, an extension of the ALS
approach that significantly reduces its approximation error.
We theoretically motivate the extension of the algorithm, and
introduce a low complexity implementation scheme. Our
performance simulations exhibit that SALS features a practi-
cally negligible error compared to the exact LS solution that
is achieved with only a marginal complexity increase com-
pared to ALS. This performance gain is achieved with about
the same low computational complexity as the original ALS
approach.

Index Terms— least squares, approximation, iterative al-
gorithm, complexity, approximate least squares.

1. INTRODUCTION

Linear Least Squares (LS) estimation is an important ap-
proach in many areas of Signal Processing. Examples of such
areas are localization [1, 2] and positioning [3], robotics [4]
and sensor registration [5], power and battery applications
[6, 7], biomedical applications [8, 9], or image processing
[10, 11]. For the linear LS problem the following system
model is assumed:

y =Hx+n, (D)

where H is a known m x p observation matrix (m > p) that has
full rank p and y is a known m x 1 vector that is typically ob-
tained from measurements. x is an unknown p x 1 parameter
vector that is to be estimated and n is an m x 1 noise vector.
The versatility of the LS approach is due to the fact that the
statistical properties of n need not to be known. The solution
%15 of the LS problem can be calculated as

x1s = (H'H)'H"y. 2)

The term (HTH)'HT” is often called pseudo-inverse of H
[12]. Many signal processing applications demand solving
the LS problem in realtime. Such realtime implementations
are usually done using fixed point precision allowing only a
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limited number of arithmetic operations. Using direct solu-
tions — often called batch solutions [13]- for x5 (e.g. by the
pseudo inverse as shown above or QR decomposition based
methods [12]) is often unfeasible in practice due to their com-
putational complexity and their high numerical precision re-
quirements. Many algorithms, e.g. based on the QR decom-
position that are considered “low complexity” in numerical
mathematics [12] are often unfeasible for realtime signal pro-
cessing applications. Other algorithms, e.g. such as the one
described in [14], aim at solving the normal equations that
require an additional computational overhead for calculation
and can lead to additional numerical problems. For realtime
applications, often an approximate solution using a low num-
ber of required multiplications as well as simple hardware ar-
chitectures for implementation is preferred over an exact so-
lution obtainable only with a huge computational effort. Our
aim was to develop an efficient method that can work directly
on the matrix H without requiring the calculation of the nor-
mal equations.

As an alternative to batch solutions, iterative methods
such as the iterative least squares (ILS) [12] approach can be
used. This method utilizes the gradient

vJ(x)=2H"Hx - 2H"y 3)

of the squared error sum

J(x) =) (h{%-y;)* = (Hx-y) " (Hx-y). 4
i=1
Here X is an arbitrary estimation vector (not necessarily the
best), h7 is the i row of H and y; is the i‘" element of y,
respectively. The above gradient is used in ILS for a steepest
descent approach to find the minimum of J(X) by iteratively
calculating

%) = D — g g (D), )

with the iteration step width p. An optimal value of p can be
found e.g. via the singular values of H [12]. Rewriting (5) in
the form

%0 =30 S on (D ) ()
=1
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indicates the required complexity of this approach. The above
equation allows interpreting the gradient as a sum of partial
gradients

di (57D = 2h, (W Tx*D — ). @)

The calculation of a partial gradient requires 2p multiplica-
tions, so per ILS iteration 2pm + 1 multiplications are re-
quired. To reduce the complexity we proposed to alterna-
tively use a different approach that we call approximate least
squares (ALS) [15]. This approach is based on an approxi-
mation of the gradient of the ILS by using only one partial
gradient per iteration. As we showed in [15] and describe be-
low, if no noise is present, ALS converges to the exact param-
eter vector x. If noise is present, ALS shows a higher average
error than ILS. The aim of this work is to present SALS —
an advanced ALS approach — featuring a significantly lower
estimation error than ALS without significantly increasing its
computational complexity. We first describe the principles
of ALS in the next section. We then motivate the SALS algo-
rithm based on the theory of ALS. We then describe the SALS
algorithm in detail and furthermore show a performance com-
parison between ALS and SALS.

2. APPROXIMATE LEAST SQUARES

Instead of calculating the sum in (6), ALS uses only a single
partial gradient per iteration:

£®) = =D oy (hE xR0 — g0, 8)
Here the operator “ " is defined such that for a positive nat-
ural number i: i = ((i—1) mod m) + 1. For simplicity we do
not write the dependence on m in the operator. In this work
the divisor in the modulo operation of * " will always be the
number of rows of H. This means that if k& exceeds m, the
first rows of H and the first elements of y are cyclically re-
used again. As it is described in [15], the error of ALS can be
split into two parts, one part depending on the starting error
e(® = %0 _ x of the algorithm and one depending on the
noise values embedded in the measurement vector y. While
the first part converges to the zero vector (when choosing u
appropriately as described below), the second part persists.
As we will describe below this leads to an oscillatory behav-
jor in the error e*) = %) — x for large k. To reduce the
influence of this noise dependent part we introduced an aver-
aging in the last m ALS iterations having the effect that also
the error between x(*) and x is averaged over the last k itera-
tions, as shown in [15]. This leads to the overall formulation
of the algorithm as described in the following description (Al-
gorithm: ALS), where IV is the number of iterations.
Although the ALS update equation (8) is arithmetically
similar to the LMS filter update equation [16], there are sev-
eral significant differences. The LMS update step uses a ran-
dom filter input vector and one sample of a desired signal as

Algorithm: ALS

XarLs =0

=0

fork=1...Ndo
%0 = %070 4 pohy (e - bR D)
if £ > N — m then

XALS =XALS +X

end if

end for

(k)

. 1
XALS = ;;XALS

input, whereas the ALS update step only uses one sample y;
of the measurement vector y as input. Instead of the random
input vectors, fixed and deterministic rows of H are cycli-
cally used. A more closer connection exists to the Kaczmarz
algorithm [17], as the ALS update equation (8) can be seen
as a variant of the Kaczmarz algorithm for overdetermined
and inconsistent linear equation systems. This cyclical usage
allowed the development of the theory of ALS in a determin-
istic manner, instead of using stochastic arguments as in the
theory of LMS. The cyclical re-use of the rows of H and the
values of y; also suggests the averaging in the last m oper-
ations, which in general reduces the approximation error, cf.
[15].

3. ALS ERROR ANALYSIS

With the error vector e~ = 7(h=1) _ 2 the ALS iteration
can be formulated as

%) = (I-2phyeh ) (e 4 x) + 2uheyee (9)

= (I-2phhl)e® ™D 4 x + 2uhyony (10)

ath

with y;» = hi.x + ny-, and ny- as the k™" element of n. Sub-
tracting x left and right from the equation leads to

e(k) _ (I _ Quhk*hg)e(k_l) + 2th‘nk‘ (11D
— Mk‘e(k_l) + Akj (12)

with Mk* = (I - 2,Ll,hk‘h{w) and Ak* = ZILLhk‘nk‘. hk:* is an
eigenvector of M- to the eigenvalue ;- = (1 - 2u|hy[3)
because

Mhye = (- 2phyhys )by
= (1-2uf by [5)hy = Aehye. (13)

We show in [15] that all other eigenvalues of M~ are one,
respectively. That means that at iteration & a reduction of the
error vector e*~1) —ji.e. in its 2-norm — can only be achieved
via the eigenvalue \;-. This eigenvalue is affected by the step
width p as shown above. When analyzing (13), one can see
that 1 > A~ > 0 when

O<p< (14)

2 |hy (3
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The eigenvalue )\~ is zero when 1 = 1/2 ||hy- 3.
As we also show in [15] for the noiseless case the error
e converges to zero if k — oo when

1

O<p< . 15
53 mas 3 )
Choosing the upper interval boundary
1
(16)

b=c————7 2
2 max_|hy[3
1=1,....m
leads to a fast decrease of the error norm [15].

4. STEP WIDTH ADJUSTMENT

Following the same arguments as above, one can see that for
the first iterations the error norm reduction is even greater
when using different values

1

- (17)
2[h} 3

H= g

for every iteration k', respectively. These values p;-, with
k" € {1...m}, can be pre-calculated, adding only the mem-
ory lookup for 1, to the complexity of the algorithm. If the
rows of H have non-equal 2—norms, choosing p according
to (17) leads to larger step widths then when choosing j ac-
cording to (16). Although these larger step widths result in
a greater decrease of the norm of e, they also result in an
increase of the noise influence. By rewriting (12) as

e® = e _ 9o h-hLe® D 4 2uhy . (18)

we observe that an increase in p (up to the value of (17) )
has to two effects: on the one hand a greater reduction of
the previous error e(*~1) (within certain boundaries, i.e. only
along the vector hy-), one the other hand an increase of the
error due to the noise value n,.

Fig. 1 shows a typical error behavior of ALS when using
w1 according to (16). The figure shows the evolution of the
error norm over the iterations k. It also allows comparing the
error behavior when using p- according to (17) in the curve
of SALS, because SALS uses this p; in the beginning (as it
is described below). For a more detailed description of the
figure we refer to the next section.

One can see in this figure that using high values of p is
beneficial for a fast decrease of the error norm in the begin-
ning. But it also leads to a higher final error, while using a
low value of y leads to an opposite behavior. To reduce the
final error, an even further reduction of y is beneficial as is
depicted by the curves of SALS. In the next section this en-
hanced approach is described in detail.

5. STEP-ADAPTIVE ALS

As a combination of both approaches we introduce the step-
adaptive ALS (SALS). For this approach we incorporated the
idea of reducing the step width with increasing k. As de-
scribed before the ALS update equation has an arithmetical
similarity with the update step in the LMS algorithm. Also for
the LMS a reduction of the step width has been proposed, e.g.
as described in [18]. However, due to the statistical deriva-
tion of the LMS, the step width reduction approaches relying
on statistical measures are not feasible for the ALS algorithm.
For this reason we developed a completely deterministic step
width reduction approach for the ALS.

When analyzing (18) one can see that if hkT,1 e*1) js large
compared to n,~ higher p values (up to the value of (17) ) lead
to a reduction of the error vector norm. When hg (k1) gets
smaller with increasing k, the part influenced by noise gets
dominant - eventually preventing a further reduction of the er-
ror norm. If hf1e(k’1) and n,- were known, an optimal value
of 1 could theoretically be calculated. But because these val-
ues are usually not known, such an approach is clearly unfea-
sible in practice. As an alternative we propose a practically
feasible way of adapting . for ALS.

If one analyzes the evolution of the ALS’ error norm with
increasing k one can observe that above a certain number of
iterations the error norm shows an oscillatory behavior. This
can also be seen in Fig. 1. After a certain number of iterations,
the error norm of ALS shown in the figure seems to be peri-
odic, however, exactly speaking it is still decreasing but in a
practically negligible way. Although the actual error of the al-
gorithm is unknown in practice, a detection of the algorithm’s
oscillation phase can easily be implemented. Due to the cyclic
nature of the algorithm’s access to the rows of H and the val-
ues of y, the vector x () (and therefore e as well as its
norm) is affected by the difference vy, = y;» -~ hL.x(*~1). For
this reason, to detect an oscillation of the error norm one only
has to observe this difference at every m'" iteration. If the
oscillation phase is detected, u is reduced at every following
iteration.

Here one has to find a trade-off. If u,- is reduced to
fast the corresponding eigenvalues Aj- are too small to re-
duce the previously accumulated noise error, while if y is re-
duced to slow the number of iterations to obtain a desired
error increases. The algorithm summarized in the follow-
ing pseudocode (Algorithm: SALS) shows a low complexity
and high performance approach for reducing p. Fig. 1 also
shows the evolution of the error norm of this algorithm in
the SALS curve. Here one can see the reduction of the error
norm for large k£ due to the reduction of p. The results shown
in this figure have been obtained for a 100 x 10 H matrix
with random entries sampled from a [0, 1] uniform distribu-
tion. Also the vector x has been sampled from the same dis-
tribution. The simulation has been done with white Gaussian
noise with a standard deviation o = le™3. The figure shows
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Fig. 1: Error norms over iterations k.

the error norms | %(*) — x| at each iteration k as well as the
error norm of the algorithms’ output X475 — x| 2, as well as
|XsarLs —x|2. For simplicity the error norms |Xars — X2
and |Xgars — x|2 are depicted via horizontal lines, but we
want to emphasize the fact that both values are only available
after the last iteration of the respective algorithms.

Algorithm: SALS

XsaLs < 0
@ 0

’Uk<—0

Ve < 1
DontReduceMu « True
fork=1...Ndo
vk < yp — hjax (D
if DontReduceMu then
1 < pug according to (17)
if " = 1 then
if |Uk - 'Uk—m| < v¢p then
DontReduceMu « False
1
T e TS
end if
Vk-m < Uk
end if
else
< f(p)
end if
%) gD 4 ohy g
if K > N — m then
XSALS < XsALS + X
end if
end for

(k)

~ 1 A
XSALS < 7-XSALS

In the SALS algorithm, vy, is compared to vg_,,. If the
absolute difference between these two values is smaller than
a threshold vy, p is first set to the (typically) lower value
(16). In the following iterations w is then further reduced by
the reduction function f(u). In the next section we show
simulation results for SALS using vy, = 107 and f(u) =

(1 — 27lleg2(N]Yy ), poth found and optimized by extensive
simulations. Here again NV is the number of iterations of the
algorithm. This reduction function has the advantage that it
can be performed with only one subtraction and a shift oper-
ation (the value of |logs(N)| can be pre-calculated). It also
ensures that the step-width is slowly reduced, allowing to re-
duce the current error while preventing the noise dependent
error to become dominant.

6. SIMULATION RESULTS

In [15] we already pointed out the significantly lower com-
putational complexity of ALS compared to iterative least
squares and sequential least squares (SLS) [13]. For ALS the
values of p;- have to be calculated for (16). So the only note-
worthy overhead for SALS is to store the m values of 1~ and
the value |[loga (V) |, respectively, as well as the operations
required for the calculation of f(u) per iteration. However,
this overhead might be considered negligible.

Fig. 2 shows performance results for random H ma-
trices for ALS and SALS, respectively. The entries of
these matrices have been sampled from a uniform distri-
bution out of [0,1]. Every simulation has been done for
white Gaussian noise with zero mean and standard devia-
tion o € S = {1074,1073,1072,107%, 1}, respectively. Per
o value 100 random matrices H and 100 random vectors
x (with random entries also sampled from a uniform dis-
tribution out of [0,1]) per H matrix have been simulated.

For every o value the averages |[Xars — X||2, ||XsarLs — X2
and ||Xps — x||2 over the simulated results have been cal-
culated. Fig. 2 shows the maximum relative increase of
ALS’ and SALS’ averaged error norms over the averaged
error norms of LS, whereas the maximization has been done

over the elements of S: 7arg = max [ ZaLs=l2 1) 3pq
S [[%xLs—x]2

rsALs = max (7||XA7‘?ALS_XH2
S [[%rs—x]|2

For the simulations of matrices with 100 rows, the num-
ber of iterations /N was set to 2000, while for the simulations
of matrices with 1000 rows the number of iterations N was
set to 15000. As one can see from these results, SALS shows
a significant reduction in the error norm compared to ALS.
From a practical point of view — especially when consider-

- 1), respectively.

X 151 I rars .
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o
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Fig. 2: Relative average errors of ALS and SALS.
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ing a fixed point implementation where further errors are un-
avoidable — the deviation of SALS compared to LS might be
considered negligible. But it is to note that for a certain group
of H matrices, f(u) can further be optimized which can lead
to even lower approximation errors. We furthermore want to
note that the relative increase of the averaged error norms re-
mained nearly constant for each test case over all simulated o
values.

7. CONCLUSION

In this paper we introduced the step-adaptive approximate
least squares algorithm, which shows a significant improve-
ment of the recently proposed approximate least squares ap-
proach. We derived the SALS algorithm based on theoret-
ically justified arguments of reducing the step width of ALS
and presented a practically feasible step width reduction func-
tion. The performance results demonstrate significant gains
compared to ALS displaying the relative error norm differ-
ence between SALS and LS in the low single digit percent-
age range. This performance advantage over ALS is achieved
with about the same low computational complexity as the
original ALS approach.
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