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ABSTRACT

This paper shows how the decoding energy of HEVC software

decoders can be estimated when using high-level features of a

coded bit stream. The investigated features comprise number

of frames, resolution, bitrate, QP, and encoder configuration,

where the proposed model reaches an average estimation er-

ror of 10%. While establishing this model, we closely investi-

gated the influence of these high-level features on the decod-

ing energy. Mathematical relations are derived that can, e.g.,

be exploited to control the decoding energy from the encoder

side. To show the validity of our research, evaluations are per-

formed on two different hardware devices and three different

software solutions.

Index Terms— Video decoding, HEVC, energy estima-

tion

1. INTRODUCTION

Smartphones and other portable devices have become an in-

dispensable gadget during the past decade, allowing for phon-

ing, messaging, or watching videos at will. A major challenge

in the development of these devices is that they should pro-

vide high-quality content while using as little battery power

as possible so as to maximize the device’s operating time.

One of the most important applications for these gadgets

is video streaming. More than half of the global mobile inter-

net traffic constitutes video streaming [1], requiring an enor-

mous amount of energy for transmitting, decoding, and dis-

playing videos on the device. In this paper, we investigate the

decoding process of an HEVC-coded bit stream, construct a

simple estimation model, and explain in detail how high-level

bit stream features influence the decoding energy. In this re-

spect, this paper will give answers to the following questions:

• How does the decoding energy change with respect to

modifications to high-level features?

• Is it possible to obtain valid energy estimates using high-

level features?

In earlier work, investigations particularly aimed at model-

ing the power consumption of real-time streaming services

for power-saving purposes. To this end, Li et al. [2] pro-

posed a model that estimates the power consumption of an

H.264 decoder based on the features frame rate, frame size,

and quantization. Later, Raoufi et al. [3] suggested using bit

rate and the ratio of intra coded frames. Both models are built

upon properties that describe the video bit stream at a high

abstraction level.

For the state-of-the-art codec HEVC, Ren et al. [4] pro-

posed estimating the decoding energy using hardware level

descriptors such as instruction fetches, cache misses, and

hardware interrupts. We suggested an even simpler method

based only on the processing time of the decoder [5]. In an-

other work, we proposed estimating the energy consumption

using a set of bit stream features that describes the coded bit

stream in detail and provides useful information about the

energetic properties of the modeled implementation [6].

Although the latter three models provide valid and de-

tailed energy estimates, their application is rather inconve-

nient. The former two models can only provide estimates af-

ter the execution of the decoding process and the latter model

is based on a very large amount of parameters. Hence, in this

paper, we investigate how high-level features as used by Li et

al. and Raoufi et al. influence the decoding energy for HEVC

decoding and how they can be exploited to obtain rough en-

ergy estimates. A possible application is to manipulate the

energy consumption of the decoder during the encoding pro-

cess by, e.g., changing the QP adaptively.

The paper is organized as follows: Section 2 presents the

test setup that is used to determine the energy consumption.

Afterwards, Section 3 introduces a number of typical high-

level features and investigates their influence on the decoding

energy. Then, based on these findings, a model that is capable

of estimating the real decoding energy is derived in Section 4,

followed by an evaluation of the estimation accuracy. Finally,

Section 5 concludes the paper.

2. TEST SETUP

We begin by introducing the test setup as it is the basis for the

obversations explained in Section 3. The energy consumption

E of a decoding process is measured using the setup described

in [5]. The measured energies mainly comprise CPU process-

ing and the energy consumption of the RAM. Background

processes and the idle energy are not included. As a general
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Table 1. Decoder configurations for the Pandaboard [7] and

the Beagleboard [8]. Column RL denotes the runlevel of the

operating system and column Optim. denotes the gcc com-

piler optimization flag. For the detailed evaluation of the

high-level features, system (D) was used. For systems (A)

to (F), the bit stream and the decoder software were loaded

onto a RAM disk prior to execution.

ID Hardware RL Cores Software Optim.

(A) Panda 1 Single libde265 [9] -o3

(B) Panda 1 Single FFmpeg [10] -

(C) Panda 1 Dual FFmpeg -

(D) Panda 1 Single HM-13.0 [11] -o3

(E) Panda 2 Single HM-13.0 -o3

(F) Panda 1 Single HM-13.0 -o0

(G) Beagle 1 Single HM-13.0 -o3

Table 2. Properties of evaluated sequences. The sequences are

taken from the HEVC test set and are encoded with HM-13.0

using the standard configurations intra, lowdelay P, lowdelay,

and randomaccess. QP is set to 10, 32, and 45.

Name Class Resolution No. frames

PeopleOnStreet A 2560 × 1600 16

Traffic A 2560 × 1600 16

Kimono B 1920 × 1080 16

RaceHorses C 832 × 480 16

BasketballPass D 416 × 240 40

BlowingBubbles D 416 × 240 40

BQSquare D 416 × 240 40

RaceHorses D 416 × 240 40

vidyo3 E 1280 × 720 16

SlideEditing F 1280 × 720 30

feature of all measurements, the reconstructed videos are dis-

carded, i.e. sent to the null device (/dev/null). We show that

the results presented in this paper are valid in general by per-

forming the energy modeling on multiple decoding systems

consisting of different software and hardware configurations

as listed in Table 1. As testing the single features for all de-

coding systems is a highly time-consuming task, we decided

to perform the detailed feature analysis explained in Section

3 only for decoding system (D).

As input videos we take sequences from the HEVC test set

that are encoded using the HM-13.0 reference software [11]

with different parameter sets. Particularly, the four different

encoder configurations (intra, lowdelay P, lowdelay, and ran-

domaccess) are tested, each using various quantization pa-

rameter (QP) values to obtain different compression levels.

As the main evaluation test set we chose 10 sequences as

listed in Table 2 using the four encoder configurations and

three different QPs, resulting in 120 bit streams. Moreover,

further streams are encoded to analyze the various high-level

features in detail. These will be introduced in the next section

in conjunction with the high-level feature analysis.

Table 3. Resolutions to test the dependency between decoding

energy and number of pixels per frame. The bold resolutions

denote the original resolutions of the two input sequences.

BlowingBubbles PeopleOnStreet

416× 240 320 × 200

832× 480 512 × 320

1248 × 720 640 × 400

1664 × 960 1280 × 800

2080× 1200 2560× 1600

2496× 1440 -

3. HIGH-LEVEL FEATURES

The high-level features we consider represent major proper-

ties of the coded bit stream. Furthermore, they are easy to

determine such that no complex analysis of the bit stream is

required. We investigate resolution, number of frames, en-

coder configuration, QP, and bit stream file size. They are

inspired by the parameters suggested in [2] and [3]. As we

aim to analyze the energy consumption instead of the power,

some of these parameters are modified to fit our purposes.

3.1. Resolution
To begin with, we investigate the relation between decoding

energy and image resolution. Intuitively, the work to decode

a sequence grows linearly with the number of pixels to be

decoded, which is experimentally proven in this subsection.

We investigate two input sequences in detail (see Table 3).

As both raw sequences are only provided with a fixed resolu-

tion, we downsample and upsample them, respectively, using

bi-cubic interpolation. In doing so, we ensure that the content

has little impact on the decoding energy. The resulting reso-

lutions are listed in Table 3, where the original resolutions are

printed in bold.

The video bit streams for this test are coded with a fixed

number of 8 frames, a fixed QP of 32, and the four encoder

configurations intra, lowdelay P, lowdelay, and randomac-

cess, resulting in 44 tested bit streams. The results for four

representative cases are depicted in Figure 1, where we plot

the decoding energy over the number of pixels per frame,

which represents the resolution in a scalar value. The other

curves are dropped for clarity, but show similar character-

istics. The lines in the plot indicate that there is a linear

relationship between number of pixels and energy, as ex-

pected.

3.2. Number and Type of Frames
In a further survey we test linearity for the number of frames.

Therefore, we encode the sequence BlowingBubbles with dif-

ferent numbers of frames ranging from 1 to 100 (fixed QP of

32, all encoder configurations). The decoding energies for

these sequences, depending on the number of frames, are de-

picted in Figure 2. We can see that the relation is highly lin-

ear and that intra coded frames require about twice as much

decoding energy as inter coded frames. In this plot we can
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Fig. 1. Decoding energy over number of pixels per frame,

both in logarithmic scale for the BlowingBubbles (BB) and

the PeopleOnStreet (PS) sequence. The lines are drawn to

highlight the linear relationship.
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Fig. 2. Decoding energy over number of frames for test se-

quence BlowingBubbles. The QP and the resolution are fixed.

also see that the inter configurations lowdelay P, lowdelay,

and randomaccess require a comparable amount of decoding

energy.

3.3. Quantization Parameter (QP)
In order to obtain the influence of the QP on the energy, we

measure the decoding of five input sequences (Basketball-

Pass (BP), BlowingBubbles (BB), Kimono (KI), RaceHorses

(RH), and vidyo3 (VI)) with all configurations and QPs rang-

ing from 0 to 50 in increments of 5. A representative selection

of the resulting curves can be found in Figure 3.

We choose a logarithmic scale for the y-axis to enhance

visibility. The slope of the curves for the other bit streams are

similar and differ mainly in the vertical offset. We can see
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Fig. 3. Relation between energy and QP for different input

sequences and encoder configurations. The energy is plotted

in logarithmic scale.

that, as expected, the decoding energy drops with an increas-

ing QP for all configurations.

As an interesting observation, the decoding of the Blow-

ingBubbles sequence consumes on average 20% more en-

ergy than the decoding of the BasketballPass sequence (green

curve “BB, intra” and blue curve “BP, intra”, respectively), al-

though all the encoding parameters (range of QP, frame num-

ber, resolution, and encoder configuration) are exactly the

same for both sequences. We assume that this behavior is

caused by the differing video content.

To obtain the relation between QP and energy expressed

in numbers, we further investigate suitable curve fittings. As

an absolute relation cannot be determined due to video con-

tent dependency, the influence of a QP change on the relative

decoding energy was analyzed. Therefore, we find that an ex-

ponential relationship is well suited to estimate the decoding

energy

Edec ≈ ζ · e−ξ·QP, (1)

where ξ is the slope of the curve and ζ the vertical displace-

ment that depends on resolution, number of frames, encoder

configuration, and video content. This equation means that

QP variations at low image qualities has a lower absolute in-

fluence on the decoding energy than QP variations at high

qualities.

Curve fitting this formula for each of the configurations

we found that the parameter ζ is highly variable, in contrast

to ξ which showed a rather constant value ranging from 0.025
to 0.053, where most values occurred close to the mean of

0.04. Translating this value reveals that when increasing the

QP by approximately 17, the decoding energy can be halved.

3.4. Bit Stream File Size

As shown in the subsection above, the decoding energy

strongly depends on the content of the sequence. A very

simple parameter that is easy to determine and that depends

on the content is the file size of the bit stream. The more

complex the content of the sequence, the larger the file will

be. In this subsection, we investigate how the file size and

thus the video content influence the decoding energy.

Therefore, Figure 4 plots the decoding energy over the

file size for all tested bit streams. We can see that there is a

relation, but that the markers are widely spread such that the

energies may even vary by one order of magnitude for a fixed

file size (as indicated by the two red markers).

We have seen in Subsections 3.1 and 3.2 that there is a

strong linear correlation between decoding energy and reso-

lution as well as frame number. Hence, we decided to in-

vestigate whether per-pixel values show a higher correlation.

Therefore, we divide the measured decoding energies and the

bit stream file sizes by their corresponding frame number and

resolution. We obtain the bytes per pixel b and the energy per

pixel e

b =

(

B

R ·N

)

and e =

(

E

R ·N

)

, (2)
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Fig. 4. Bit stream file sizes and measured decoding energies

for the evaluation bit stream set. The two red markers indi-

cate the variation the decoding energy can have for a fixed bit

stream file size.
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Fig. 5. Relation between bytes and decoding energy per pixel

for the bit streams of the evaluation test set (blue and green

markers) and approximation (red). The green markers depict

the values for inter-coded frames from the sequence SlideEd-

iting (SE). Due to the 4:2:0 color format, a raw 8-bit sequence

would feature b = 1.5 bytes per pixel.

where B is the bit stream file size in bytes, E the measured

decoding energy,R = width·height the resolution in number

of pixels per frame, and N the number of frames. The result

is plotted in Figure 5.

This diagram shows the mean decoding energy per pixel

e over the mean bytes per pixel b for each bit stream (blue and

green markers). We can see that the variation has decreased

significantly and that this distribution can even be well ap-

proximated by a curve (red line). The proposed approxima-

tion will be further used and discussed in the next section.

To summarize, we have seen that a relation between de-

coding energy and a selected set of high-level features is in-

herent to HEVC software decoding. In the next section, we

derive an energy model based on these observations and show

the estimation accuracy for a larger set of test cases.

4. HIGH-LEVEL ENERGY MODEL

Based on the observations presented above, we propose the

following model to estimate the decoder’s energy consump-

tion

Ê = R ·N · (α+ β · bγ) . (3)

Corresponding to Sections 3.1 and 3.2, the resolution R and

the frame number N are considered as linear terms. α, β,

and γ are specific variables of the decoding system and, in

conjunction with the bytes per pixel b, describe the red curve

Table 4. System parameters fitted for the decoding systems.

The parameter C is only required for system (G).

ID α β γ C

(A) 3.55 · 10e−8 6.46 · 10e−7 0.424 0

(B) 6.57 · 10e−8 5.76 · 10e−7 0.499 0

(C) 6.73 · 10e−8 5.67 · 10e−7 0.493 0

(D) 1.01 · 10e−7 9.87 · 10e−7 0.443 0

(E) 1.58 · 10e−7 1.57 · 10e−6 0.448 0

(F) 1.68 · 10e−7 3.54 · 10e−6 0.370 0

(G) 2.16 · 10e−8 2.76 · 10e−7 0.763 0.132

shown in Figure 5. Furthermore, as we found in further

tests that including the QP or the encoder configuration into

the formula does not increase the estimation accuracy sig-

nificantly, we conclude that both these parameters are well

represented by the bytes per pixel b and disregard them in the

following.

4.1. Model Accuracy

To match this model to our investigated systems shown in

Section 2, we calculate least-squares fits using the evaluation

bit stream set (Table 2). The resulting parameter values are

summarized in Table 4.

During the evaluation, we found that system (G) has a

special property. Using the model proposed above returns

very poor estimation results in comparison to the other sys-

tems. Investigating closely the measured decoding energies

revealed that the model needs to be modified: For each bit

stream, a constant C has to be added:

Ê(G) = C +R ·N · (α+ β · bγ) . (4)

This observation will be discussed in the next subsection.

To show the estimation precision between the measured

decoding energy E and the estimated decoding energy Ê for

a single bit stream, we calculate the estimation error for each

decoding system X and bit stream m by

εX,m =
Ê − E

E

∣

∣

∣

∣

∣

X,m

. (5)

Investigating the results for the different raw sequences, it

is striking that especially the bit streams encoded from the

sequence SlideEditing (SE) are poorly estimated. These se-

quences correspond to the green markers in Figure 5 and are

located significantly below the red approximation curve. As

this observation is true for all decoding systems, we conclude

that special video content like, e.g, screen content or static

scenes, should be estimated using different parameter values.

We demonstrate the overall estimation accuracy by calcu-

lating the mean absolute estimation error for each decoding

system

ε̄X =
1

M

M
∑

m=1

|εX,m| . (6)
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Table 5. Mean absolute estimation errors for each decoding

system. We show the estimation error including and exclud-

ing the SlideEditing (SE) sequences. The right column shows

the estimation errors from the simple model in [6] for systems

(A) to (D), the others were not evaluated.

ID ε̄ incl. (SE) ε̄ excl. (SE) ε̄ [6]

(A) 19.23% 10.95% 5.58%

(B) 14.76% 9.82% 6.51%

(C) 15.18% 9.96% 5.83%

(D) 14.51% 9.36% 4.47%

(E) 14.12% 9.29% −

(F) 23.55% 13.82% −

(G) 12.22% 10.27% −

The results are shown in Table 5, where we distinguish be-

tween the mean error with and without the SlideEditing se-

quences. Furthermore, we give the estimation errors of the

more sophisticated model using 20 parameters presented in

[6] for comparison. We can see that, disregarding screen con-

tent videos, the proposed model reaches mean estimation er-

rors of about 10%. This is only about twice as high as the

sophisticated model [6] which is remarkable as the model is

only based on three instead of 20 parameters.

4.2. Interpretation & Constraints
The system specific variable α can be interpreted as the basic

energy needed to reconstruct one pixel of a sequence, which

includes initializing and saving the pixel data to the mem-

ory. β and γ describe how the energy increases when a higher

number of bits is spent per pixel, which mainly reflects the

decoding complexity. In this manner, b summarizes informa-

tion about the input data complexity (the video content) and

the chosen QP value, which both have a major impact on the

bit stream file size.

The constant C introduced in (4) can be explained by the

RAM usage: For system (G), the HM-decoder software needs

to be loaded from the flash memory to the RAM. For the other

systems, this is not required as the software is stored on a

RAM disk beforehand. Hence, this process is not part of the

measurement such that the constant C is not required.

Another constraint can be identified when analyzing short

sequences. We found that the estimation error for sequences

containing only four frames rises up to 28.91% when exclud-

ing the SlideEditing sequences (system (D)). Hence, the pro-

posed model is only applicable for sequences containing at

least 16 frames (cf. Table 2).

5. CONCLUSIONS

In this paper, we have shown the relation between high-level

features and the decoding energy of software decoders for

HEVC coded bit streams. Features that influence the decod-

ing energy most are the number of frames, the resolution, the

QP, the encoder configuration, and the content of the input

sequence. As the impact of the latter three features is hard to

determine, we introduced the feature “bytes per pixel” which

is highly suitable to represent these feature’s impact on the

decoding energy. We showed that this model returns valid re-

sults for sequences containing at least 16 frames, where the

input sequence shows no special content (e.g., screen con-

tent). An average estimation error of approximately 10% can

be reached, which is only about twice as high as for more

sophisticated modeling approaches [6]. In contrast, the pro-

posed model only requires three instead of 20 or more fea-

tures.
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