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Abstract—In cognitive radio networks, the task of spectrum
sensing is required to be reliable at low signal-to-noise ratios
(SNRs). Spectral correlation is an effective approach to satisfy the
requirement. The algorithms based on statistic spectral correla-
tion profiles are a good method as shown in some previous works.
In this paper, we propose an algorithm with maximum ratio
combination for the profiles to enhance the method. We construct
a formula of statistic test and describe an implementation for our
algorithm in practice. Extensive simulations are carried out to
verify the performance of algorithms. As a result, the proposed
algorithm outperforms the existing algorithms with a neglectful
cost of additional complexity.

I. INTRODUCTION

The concept of cognitive radio (CR) was proposed by
Joseph Mitola IIT in 1999 [1] by which a radio node can be
aware of the surrounding radio environment. For the aware-
ness, spectrum sensing is one main task which is to recognize
the presence of signals with noise. The research on spectrum
sensing has been an interested field for two decades. Spectrum
sensing should be reliable at low SNRs. Regulators encourage
the research and recommended requirements for spectrum
sensing such as: the probability of detection (Pd) under the
constraint of a constant false-alarm rate (CFAR) for some
given SNRs. In the regulation of Federal Communications
Commission of USA [2] it is required that Pd is higher
than 90% with CFAR lower than 10% at a low signal-level,
e.g., —116dBm for digital TV (normally corresponding to
SNR = —21dB).

Spectral correlation is considered as a good approach
[3] for spectrum sensing to realize the aforementioned goal.
Gardner is a pioneer in the research on spectral correlation.
The theory of spectral correlation was well investigated in his
works [4]-[6]. As pointed out by Gardner, many man-made
signals contain components which vary periodically due to the
underlying mechanism of signal manipulations. Some hidden
periodicity [4] can be exploited by some techniques of spectral
analysis, e.g., a quadratic time-invariant (QTI) transformation
for signals. They are second-order periodicity. The second-
order periodicity with (cyclic) frequency is equivalent to spec-
tral lines of the output from QTI transformation appearing in a
specific period. It is therefore called as spectral correlation. The
spectral correlation of noise is significantly different from that
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of desired man-made signals. For noise, the spectral correlation
approaches to zeros. Meanwhile, the spectral correlation is
non-zero for desired signals even at low SNRs. The spectral
correlation therefore is applicable in modulation classification
and signal detection. In CR, this approach helps to detect the
desired signal in a low SNR regime as the one specified by
relevant regulators.

For desired signals, their spectral correlation is related with
the parameters of the signals: the baud rate and the carrier
frequency. Sutton analyzed extensively in [7] the effect of
the parameters on spectral correlation in a plane of cyclic
frequency, «, and spectral frequency, f. A sum of correlation
could be computed with the whole «f plane for a statistic
test of detection. This method is called as the convention-
al algorithm. However, the high burden of computation for
sensing nodes is due to high number of correlation peaks
in the plane. To reduce the complexity, Fehske proposed an
algorithm in [8] which selects the maximum correlation peaks
along the « axis into an « profile. Basically, this algorithm
computes the correlation for a half of peaks in the plane. Its
complexity therefore is significantly decreased comparing to
the conventional algorithm. For a further enhancement, Wu
and Eric et al. [9], [10] proposed an algorithm based on the
af profile which is the maximum peaks in the both axes of
af plane. They proved that the «f-profile-based algorithm
has significantly low-complexity and outperforms those of the
a-profile-based and the conventional algorithm.

In our work, we consider not only the confident regions
of spectral correlation peaks in the «f plane but also the
amplitude of the peaks. We propose an enhanced algorithm
which uses the peaking amplitudes of the o f profile as weight-
ing coefficients. The proposed algorithm outperforms the af
profile algorithm. An additional complexity in our algorithm
compared to the af profile algorithm, is the multiplication
between the amplitude of peaks and the weighting coefficients.

The rest of paper is organized as follows. The background
of spectral correlation is presented in Section II. In Section III,
the new algorithm is mentioned. The simulation results then
show performance of the algorithm. Finally, conclusions are
drawn in Section V.

II. BACKGROUND OF SPECTRAL CORRELATION

Second-order periodicity of a signal is examined by the
cyclic autocorrelation function (CAF) which is a kind of QTI
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transformation. For an envelop signal y (t), CAF is defined as

[4]:
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where 7 and « denotes time lag and cyclic frequency, re-
spectively. CAF exhibits the second-order periodicity in time
domain with cyclic frequency «. With the above form, CAF is
considered as a generalization of conventional autocorrelation.
It reduces to conventional autocorrelation at « = 0. Mean-
while, CAF presents the correlation between two components
y(t+7/2)e 7™ and y (t — 7/2 ) /™, This is also called
spectral correlation.

In frequency domain, CAF is transformed by Fourier
operation into spectral correlation function (SCF):
o0

Sy (f) = / R, (1,a)e 2"/t qt. 2)

— 00

To estimate the spectral correlation, a spectrally smoothed
cyclic periodogram is defined in [4] as

Se., ([t f) = AitYAt (t, Fr %) YZ, (t, - %) G

where
t+At)2

Y (t, f) = / y (v) 920y,
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This equation shows that SCF is equivalent to the correlation
between a spectral line and its shifted version with a frequency
a. Thus, a SCF is approximated by the periodogram as:

f+Af/2
Sy (f):Al}goAyglooA—f / Se, (tu)du. (4
F-Af/2

Parameter At and A f are temporal resolution and spectral
resolution [7], respectively. These two parameters are so cho-
sen that their product is much greater than unity: AfA¢ > 1.
Temporal resolution At normally is determined by the baud
rate of signal. It can be a multiple integer of the symbol
duration. Spectral resolution A f meanwhile is calculated for a
reliable S (f) as analyzed in [11], by which we can observe
the spectral correlation peaks of confident regions in the o f
plane.

III. PROPOSED ALGORITHM
A. Profile of spectral correlation

For cellular networks, i.e. the uplinks of 4G networks, data
modulation can be binary phase-shift keying (BPSK) or higher
quadrature amplitude modulation (QAM) due to the density
of users. The af profile varies with modulation types. The
profile of SCF for BPSK and 16QAM are shown in Fig. 1
and Fig. 2, respectively. For BPSK, SCF is symmetric with
respect to « and f axes because BPSK symbol is symmetric
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Fig. 1: SCF of BPSK.

data: {+1,—1}. When o = {0,0.5}, SCF is high due to
carrier frequency. Other peaks appear due to the pulse-shape
filter of transmitter: @ = {0.125,0.375,0.75}. The SCF is
nonsymmetric for high-order modulation such as 16QAM.
There are only high peaks at o = 0, equivalent to conventional
power spectral density, and low peaks at v = 0.125.

In realistic scenarios, o and f profile are computed when
the parameters of the underlying signals at the transmitter are
known. The baud rate and carrier frequency can be looked up
from a radio environment map (REM) as described in [12],
[13].

B. Statistic test

The af profile is selected as in [9]. The profile con-
tains the position cyclic frequency, spectral frequency, and
the amplitudes of the peaks. Considering the advantages of
maximum ratio combination (MRC), we use the amplitudes
of some selected peaks as the weighting coefficients. This
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Fig. 2: SCF of high order modulation: 16QAM.

combination can give further performance gain compared to
existing algorithms in which all coefficients are equal to 1.
The statistic test of the new algorithm is as follows

> carSy (f)| /(Z ly (£)1] % Zk> &)

a,k a,k
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where ¢, are coefficients of the spectral peaks of selected
confident regions at cyclic and spectral frequencies with the
indices a and k, respectively.

In the denominator, the component »_ ||y (¢)|| is to nor-
malize the signal power. Hence, the computation for pre-
defined thresholds does not depend on noise estimation. It
results in that the proposed algorithm is completely intensive
to noise-uncertainty phenomenon [14]. The numerator is a
sum of complex-amplitudes of selected peaks. For convenient
comparison, we use subscripts af and «fco to denote the
algorithms based on af profile without/with the weighted
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coefficients, respectively. In previous works [8]-[10], there is
no explicit formula of statistic test. Additionally, we validate
algorithms with other forms. Thus, we use subscripts abs and
complex to indicate the two different statistic forms with the
numerator as Y ||(.)|| and || (.)||, respectively. The proposed
algorithm is equivalent to o fcocompies-

As shown in Eq. (5), the additional complexity of the
proposed algorithm is the multiplication operation for the
coefficients and SCF peaks compared to the o f algorithms.
Therefore, the additional complexity can be neglected.

C. Flowchart of the proposed algorithm

The flowchart of the new algorithm are described as follows
Step 1 - Measure the average of SCF:
The average of SCF can be statically measured by collaborative
sensing nodes or be computed by a neutral network with the
knowledge of baud-rate and carrier frequency stored in a REM.
The sensing node acquires «f profile from the SCF before
it computes a statistic test. In this step, thresholds are also
computed as the expected values of CFAR.

Step 2 - Compute the SCF of the received signal:
The received signal is transformed into frequency domain by
FFT. Spectral lines are selected to compute spectral correlation
peaks as a part of SCF corresponding to the spectral and cyclic
frequency in the predefined o f profile.

Step 3 - Combine for the statistic test:
The selected peaks are scaled up with the weighting coeffi-
cients as defined by the averaged SCF. Next, the statistic test
is combined as given in Eq. (5). The test is compared with
a predefined threshold to decide whether or not the desired
signal appears.

IV. SIMULATION RESULTS

The proposed algorithm is simulated with the two mod-
ulation types: BPSK, and 16QAM. The main simulation pa-
rameters are listed as in Table I. CFAR is sensitive to the
pre-defined thresholds. The number of simulation trials for
threshold computation is therefore sufficiently high to compute
the thresholds. The accuracy of threshold computation leads
to the exact comparison for the algorithms. In simulations, the
performance of algorithms are verified including: our proposed
algorithm as in Eq. (5), afcoaps, @fabs. and afeompies-

TABLE I: Simulation parameters

Parameter Values
Modulation BPSK, 16QAM

FFT size 128

Sampling frequency 1.92MHz
Over-sampling ratio 8

Channel model Additive white Gaussian noise
Threshold 1%

Simulation trials CFAR: 6000, Pd: 1200

The proposed algorithm outperforms «f algorithms for
different modulations as shown in Fig. 3. Nevertheless, there
is a low performance gain between «fco,,, and afups. The
reason is that the summation of scaled peaks with the complex
SCF (in the case of the proposed algorithm) eliminates noise
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Fig. 3: The probability of detection with CFAR: 1%, and
observation time: Sms.
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Fig. 4: The receiver operating characteristic (ROC) with ob-
servation time: 5Sms.

components more effective than that with the absolute SCF
(in the case of afco,,, algorithm). For BPSK modulation,
the performance gain of the proposed algorithm is 1dB and
5dB when comparing with a:f,ps and o feompies, respectively.
With a summation of the real-part, af algorithms has a
higher performance of 4dB than that with a summation of
the complex-part. The performance gain of «f,;s compared
t0 & feomplew can be explained by the reflective symmetry of
the SCF as shown in Fig. 1b. This symmetry appears only
if the SCF is computed with the real-part of the envelop
signal. For 16QAM, meanwhile, the SCF with the real-part
is no difference to the complex form. The performance of the
proposed algorithm is about 1dB and 0.5dB higher than that
of afaps and a feompiea, respectively.

The curves in Fig. 4 present comparisons among the
algorithms at very low SNRs. The new algorithm has bet-
ter performance than existing algorithms, «f. For example,
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false alarm : 10% with BPSK the performance gain is 12%
and 19% at -25dB and -22dB, respectively. With 16QAM, the
performance gain is 6% at -25dB.

From the simulation results we can conclude that: (1) afco
algorithm outperforms «f algorithm. The performance gain
depends on the af profile; (2) for BPSK, we should use
the absolute SCF for «f algorithms; for higher-order data
modulation, i.e. QAM, we should use complex SCF for both
af and afco algorithms.

V. CONCLUSION

In this paper, we proposed an enhanced spectrum sensing
which is based on maximum ratio combination of spectral
correlation. The new algorithm outperforms the existing al-
gorithms with a marginal increase in the complexity. The
proposed algorithm can be applied to the detection of primary
signals in cellular networks.
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