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ABSTRACT

We address the problem of estimating the initial frequency
and frequency rate of a linear chirp with harmonic compo-
nents given time samples of the observed signal. As an alter-
native to the maximum likelihood estimator, which requires
an exhaustive search in the initial frequency-frequency rate
space, we present a two-step estimation method. First, the
signal is separated into its harmonic components. Then, the
two parameters of the fundamental component are jointly
estimated using a least squares approach given the esti-
mated time-varying phase of each separated component.
This method is compared to the maximum likelihood and
to a modified high-order ambiguity function based method.
Simulations results and a real data example demonstrate
the performance of the proposed method. In particular, it
is shown that the estimates achieve the Cramer-Rao lower
bound at high signal-to-noise ratio and that the two-step
method outperforms the high-order ambiguity function based
method.

Index Terms— Maximum likelihood estimation, har-
monic chirps, Cramer-Rao lower bound.

1. INTRODUCTION

Chirp signals are common in man-made systems such as
radar, sonar and communication systems. They can also be
found in nature, e.g. bats, whales and dolphins echoloca-
tion calls. In addition, chirps can be used to model more
complex non-stationary signals such as speech. Harmonics
can be used deliberately to increase detectability in active
transmission systems such as tissue harmonic imaging [1]
or by mammals [2]. They can also occur due to propaga-
tion through non-linear media in applications such as speech
processing and target localization [3], [4].

Methods for chirps parameter estimation include rank re-
duction techniques [5], phase unwrapping [6, 7], high order
ambiguity function (HAF) based methods [8, 9], multi-linear
methods [10], high-order phase function [11], nonlinear least-
squares method [12] and subspace methods [13].
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In this work, we consider the case where the signal is
modeled as a sum of a known number of harmonic compo-
nents of a fundamental linear frequency modulated (LFM)
chirp (the case where the number of harmonic components is
unknown is discussed in [14]). Such a model is usually used
to model the chirp signal of bats, whales or birds. We develop
a maximum likelihood estimator (MLE) for the two parame-
ters of interest: the initial frequency and the frequency rate of
the fundamental LFM. We then present the Cramer-Rao lower
bound (CRLB) for the estimation error of the parameters of
interest and show that the error of the initial frequency and
frequency rate decrease as 1/N3/2 and 1/N°/2, respectively,
where NN is the number of samples.

The MLE requires a high resolution exhaustive search
in the initial frequency-frequency rate space and therefore
involves a large number of computations. To overcome this
burden, we suggest two sub-optimal, low-complexity es-
timation methods. The first method is a modification of
the well-known HAF based estimation method for multi-
component polynomial phase signals (PPS) [9]. This method
transforms the problem from a two-dimensional maximiza-
tion to two one-dimensional maximization problems. For a
signal with harmonic components, the parameters of interest
are estimated by introducing a constraint on the parameters
of each component. The second method is the harmonic
separate-estimate (Harmonic-SEES) method [14], which is
a low-complexity estimator based on the separate-estimate
(SEES) approach, used for estimating the coefficients of a
constant modulus signals [15]. The proposed method is com-
posed of two steps [14]: The first step is a coarse estimation of
the parameters of interest. By using these estimates, the har-
monic components are de-chirped and separated by filtering.
The process of de-chirping refers to transforming a linear
chirp signal to a sinusoid with the same initial frequency.
Once the components are separated, a joint least squares
approach is used to refine the initial coarse estimates. The
HAF based method is presented mainly as a benchmark for
the proposed Harmonic-SEES method being very simple and
popular. Simulations show that the Harmonic-SEES method
achieves the CRLB at high signal to noise ratio (SNR) and
outperforms the modified HAF estimation method.
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2. PROBLEM FORMULATION

Consider a discrete-time signal composed of M attenuated
harmonic components observed in the presence of noise

M
zln] = Z amsm[n; 0] + o], n=0,...,N—1 (1)

m=1

where a,, = |a,,|e?*™ is the unknown complex attenuation
of the mth harmonic, and v[n] is a zero mean white Gaus-
sian discrete-time sequence representing the additive noise
with a known variance o2. The mth harmonic component
in discrete-time is

n=0,...,N—1

= f2mm(Oint30an%) m=1,....M 2

Sm[n; 0]

where 6 = [0;,65]7. We assume that max{ M6, M(6; +
02N)} < 1 where the first and second arguments correspond
to the case of decreasing and increasing chirp harmonics, re-
spectively.

By collecting the N samples of the received signal in (1)
we obtain a compact vector-form model given as,

x = Spa-+v 3)

where we define x = [z[0],...,2[N — 1]]7,

So = [s1(0),...,80(0)], sm(0) = [sm[0;0],...,8m[N —
1; 0}]T, a=lay,..., aM]T, and v = [v[0],...,v[N — 1]]T.
The unknown parameter vector of the model, which we would
like to estimate, is ¢ = [0, a%/]T.

3. MAXIMUM LIKELIHOOD ESTIMATOR

We now present the MLE of ). The noise vector, v, is a com-
plex multivariate circularly Gaussian random vector. There-
fore, x ~ N (Spa, 021 y), where Iy is the N x N identity
matrix. The negative log likelihood function of x is given by

1
() = 5= |[x — Seal|” + log(K) )

= E

where K is a constant. The MLE of 1) thus minimizes the

first term in (4). By taking the derivative of (4) w.r.t. a’l and

equating to zero, it can be shown that MLE of a is given by

a = (S}'Sy)~'SE x. Substituting this estimate in (4) yields
~ (MLE

the MLE of 0, denoted by 0( ),

- (MLE)

0 = argmax xHPsex 5)

0

where Pgs, = Sg(S}'Se) 'S/ . Maximizing the term in (5)
requires a two-dimensional high resolution search in the ini-
tial frequency-frequency rate space.

The covariance matrix of any unbiased estimate of 1), de-
noted by cov(¢p) = E[(¢ — 1) (¢ — p)T], is lower bounded
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by the inverse of the Fisher information matrix (FIM), de-
noted by J b ap- Following [16], it can be shown that the FIM
is a block diagonal matrix in the form of

J0a

For a large number of samples, i.e. for N > 1, the CRLB of
0 is approximately given by [14]

3 Joo
(VR Jga

. 1 o2 24 45
0)> ——2— 7
@O g | 5 4] O

where Q = diag(1,2,...,M). A complete and detailed
derivation can be found in [14]. In order to achieve the lower
bound, the required search resolution is 1/N3/2 and 1/N°/2
for the initial frequency and frequency rate, respectively.
Therefore, it can be shown that the computational complexity
of the MLE is O (M N°) [14].

4. HIGH ORDER AMBIGUITY FUNCTION

A low complexity sub-optimal parameter estimation method
of a multi component PPS based on the HAF was introduced
in [9]. The HAF is used to reduce the dimension of the prob-
lem to multiple one dimensional problems. We now present
how the HAF based parameter estimation can be modified to
estimate the parameters of harmonic LFM signals.

The second order ambiguity function is defined as [9]

N-1
Xo(0;7) = Z Lo[n; T]e I20n 8)

n=0

where 25[n; 7] = x[n]z*[n — 7] and 7 is a delay (measured
in samples). It can be shown that applying the second order
ambiguity function to an LFM signal yields a complex sinu-
soid signal with a frequency proportional to the chirp rate [9].
That is, 2a[n; 7] will be a sum of M complex sinusoids at
the frequencies 6,,, = 7m#,. The problem of estimating
the frequency rate becomes a discrete time Fourier transform
(DTFT) maximization problem. Using the harmonic relation,
we estimate the frequency rate as

M
N 1
HEHAF) = —argmax Z Xo(mby; 7). 9)
T 02 m=1
Once the frequency rate is estimated, we define the following
set of signals
Tm[n] = z[n]e*j%%mégﬂmnz. (10)
where m = 1,..., M. Each signal z,,[n] is a complex si-
nusoid in presence of noise and interference from the other
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components. Again, the initial frequency is estimated using
one a dimensional DTFT maximization

M
O — argmax > wpnje 2o, (a1
01

m=1

The HAF method relies on DTFT maximization. There-
fore, a high resolution search is still required. However, the
HAF reduces the problem to two one-dimensional searches.
The computational complexity of the HAF based method is
O (N7/2) [14], which is substantially less than that of the
MLE and independent on the number of harmonic compo-
nents. We also note that the HAF estimation method suffers
from error propagation. That is, error in the frequency rate
estimate has a great impact on the estimation of the initial
frequency.

5. HARMONIC SEPARATE-ESTIMATE METHOD

Both the MLE of @ in (5), and the HAF estimation method,
in (9) and (11), require high resolution search. In order to
reduce it, a low complexity method for the estimation of  is
presented, which we term as an Harmonic-SEES method.

The proposed method consists of two steps. First, the sig-
nal is separated to M harmonic components. Next, the two
parameters of interest are estimated using the least squares
method given the phases of each component.

In order to separate the components, the quadratic term in
the phase must be eliminated. This is termed as de-chirping
process since eliminating the quadratic term yields a sinusoid
in the presence of other harmonic components and noise.
Therefore is can be easily filtered using standard filtering
methods. We define a de-chirping set Q@ = {021,...,602 1}
of L frequency rate candidates. For each candidate, M de-
chirped signals are defined

D(mby)x, m=1,..., M (12)
diag(1, ..., e 92T amb2c(N=1)%) " (13)

Xem =

D(megg) =
Denote by X ., the discrete Fourier transform (DFT) of x; ,,

Xpm = Wxgm L WD(mfo )x (14)

where W is the N x N DFT transform matrix.

When the candidate frequency rate, 65 ¢, corresponds to
the true frequency rate, each Xy ,,, should have a strong peak,
with a value of N|a,,|, at the frequency corresponding to
the true initial frequency. Hence a suitable candidate can be
found by summing the maximum value of each component,
ie.,

M
b = argmax Y [0k (020 (15)

02,0€9Q 0y

1493

where .f?gﬁm[k?(:;x)] is the maximum value of Xy, [k], and the

location of the maximum is,

kg;x) = argrknax|§:g,m[k]|. (16)

Other possible selection criteria can be based on computing
the sparsity of Xy ,,,, €.g., using its Kurtosis [17].

Given 0, = 927 7> €ach harmonic components can be sep-
arated in the frequency domain by a bandpass filter with a
width of A as follows

Y,, = diag ([of<mﬂx_>A/2, 1£,0§k<mx)A/2]T> (17)
m,l m,

where 1y (On) is an N x 1 vector with all elements equal to
one (zero). The filtered signal in the time domain is obtained
by performing an inverse DFT (IDFT) followed by a chirp
multiplication, i.e.,

ém = D(méQ)HWHYm)_(E,m
YL D(mly) " WHY ,, WD, (mfy)x. (18)

We thus obtain a set of M harmonic components,
{81,...,8um}, of the observed signal.

Once the harmonic components are separated, a joint
phase unwrapping and parameter estimation recursive pro-
cess [7] is used to estimate the parameters of the fundamental
chirp. The phase of the mth component is given by

Om[n] = i, + 2em(61n + %92712) + emn] (19)

where €,,[n] is an error caused by the filtered noise. De-

fine the vector of phase measurements obtained from the

. N 5 A
mth reconstructed harmonic component, S,,, by ¢, =

[Gml0], - - -, SN — 1]]7,
&, = pmly +2rmHO 4+ €, m=1,.... M  (20)
where H = [hy, hy] withhy = [0,1,...

[02/2,12/2,...,(N —1)2/2]T.
We now present the recursive estimation process. At each

,N—1]T, and hy =

A ~T ~T T - .
step, [n] = [fv” [n], O [n]]* is a vector of the current esti-
mates of the parameters, where f1[n] = [i1[n], ..., fiar[n]]T.
Then, the unwrapped phase is given by

¢[n] = Hn]n[n] + e[n] 1)
where ‘
| 2mn n?
Hn)= | Iy | (22)
' 2rMn wM n?
¢l = [Gi[n],....ouM]", eln] = [eilnl,...,en[n]]”

and I, is the M x M identity matrix.
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Fig. 1: RMSE for each estimator including the CRLB.

The algorithm is initialized with an estimate given L >
M + 2 samples of the unwrapped phased using a conventional
unwrapping algorithm, e.g. [6],

AL = (HIH,) ' HIg, (23)

where Hy, = [HT[0],...,HT[L — 1]]T and

o [&)T [0,..., &)T [L — 1]]T is a vector of the unwrapped
phases of all harmonic components up to the L’th step. For
the nth step, where n = L + 1,..., N — 1, the following is
performed. First, the unwrapped phases are predicted using

lnln — 1] = HnJ[n — 1]. 24
Next, the actual unwrapped phases are given by
Omln+1] = axg (5ulnle ™" ) 46, nln—1. (25)
Finally, the estimated vector, 7, is updated,
Afn+1) = n] + K1 (@0 +1] = Hln + ifn] ) 26)

where K, 1 = (HZHH,LH) “lHT [n+1]. Note that K,,, 11

is not data dependent and can be computed off-line. The esti-
~ (HSEES
mated parameters are obtained from the final step, 0( )

0[N —1].

Due to the use of the DFT rather than the DTFT, it can be
shown that the computational complexity of the Harmonic-
SEES is O (M N?logN) [14]. Unlike the HAF method, it
is proportional to the number of harmonic components. How-
ever, this number is usually small and therefore the Harmonic-
SEES method performs better than the HAF method in terms
of computational complexity.

6. EXPERIMENTAL RESULTS

We now compare the performance of the MLE, the HAF
method and the Harmonic-SEES method. We consider
M = 4 harmonics with initial frequency and frequency rate
of §1 = 0.15and ; = —2.5 - 10~*, respectively. The ampli-
tude of the /mth harmonic is given by a,, = 2(1=7)/2¢itm,
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Fig. 2: Estimation errors and confidence ellipses of the
fundamental frequency and frequency rate.

where {pi, }M_, are uniform i.i.d in the range of [0, 27] and
were generated once per scenario. The number of samples is
N = 256. The noise power, o2, is adjusted to give the desired

SNR defined as SNR = 10log; (Zﬁ‘f:l |2 /ﬁ) [dB].

First we evaluate the performances of the estimators
in terms of root mean squared error (RMSE) defined as

RMSE(0),) = ﬁwzjv;fp €24 k = 1,2 where ¢, =

HAM — 6}, is the estimation error and ék,,» is the estimate of
0y at the ith trial. N¢z;, = 300 is the number of Monte-Carlo
independent trials. We consider SNR values ranging from
—5[dB] to 15[dB]. The RMSE versus SNR results for both
parameters are presented in Fig. 1. The CRLB is also plotted.
The Harmonic-SEES estimates of both parameters achieve
the CRLB for SNR values of 7[dB] or more. The HAF based
estimation does not achieves the CRLB. However, it obtains
a good estimation for SNR values of 9[dB] or more.

The scattering of the estimation errors for the Harmonic-
SEES method are presented in Fig. 2 for SNR of 7[dB] and
—3[dB]. In addition, in each plot, the theoretical and actual
50% confidence ellipses are presented. The theoretical el-
lipse is calculated from the CRLB and the actual ellipse is
calculated from the covariance of the results. For SNR of
—3[dB], the RMSE of the Harmonic-SEES method is much
higher than the theoretical bound. Therefore the actual el-
lipse in that case is much larger than the theoretical. For SNR
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Fig. 3: Wigner-Ville distribution and estimated harmonic

components of an E. Fuscus bat call.

of 7[dB], where the Harmonic-SEES achieves the theoretical
bound, both ellipses are similar.

Next we demonstrate the parameter estimation of an
echolocation call produced by an E. Fuscus bat [18]. We
used 256 samples to estimate the parameters of M = 2
harmonic components. Figure 3 presents the estimated com-
ponents plotted on the Wigner-Ville distribution (WVD) of
the signal. Two harmonic component can be seen, along with
a cross-term between them. Note that the components are not
linearly modulated. The markers on the WVD denote local
peak detection. It can be seen that the cross-term is in part
stronger than the harmonic components.

7. CONCLUSION

We addressed the problem of estimating the parameters of
harmonic linear chirps. The MLE for the parameters of
interest requires a high resolution two-dimensional search
and therefore involves a large number of computations. We
suggested a sub-optimal low complexity estimation method,
namely the Harmonic-SEES, that first separates the harmonic
components and then the parameters are estimated using a
joint least squares given the phases of the separated compo-
nents. We also considered the HAF based estimation method
with modifications for the case of harmonic components.
Simulations show that the Harmonic-SEES method achieves
the Cramer-Rao lower bound at high SNR and performs better
than the HAF in terms of RMSE.
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