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ABSTRACT

Tensor algebra has become of high interest recently due to its ap-
plication in the field of so-called Big Data. For signal processing
a first important step is to compress a vast amount of data into a
small enough set so that particular issues of interest can be investi-
gated with todays computer methods. We propose various gradient-
based methods to decompose tensors of matrix products as they ap-
pear in structured multiple-input multiple-output systems. While
some methods work directly on the observed tensor, others use input-
output observations to conclude to the desired decomposition. Al-
though the algorithms are nonlinear in nature, they are being treated
as linear estimators; numerical examples validate our results.

Index Terms— Tensors, Decomposition, BigData

1. INTRODUCTION

Big Data is the keyword for future innovations [1], changing not
only economies but also our daily life. Once huge data amounts are
available, many questions about our society can be answered now in
a short time. Even the structure of the Internet will change in future
to support effective data access [2]. In the signal processing domain,
typical questions treat on how to compute such huge data amounts
efficiently and, related to this, how data compression can work best
in order to reduce complexity. Linearly separable operators are well
known in the context of fast algorithmic implementations such as
Fast Hadamard or Fast Fourier Transformations. Once a multidi-
mensional data set can be separated into a set of smaller vectors,
matrices or tensors, huge data compressions can be achieved. We
provide here a copy of the definition of separability for the conve-
nience of the reader, see, e.g., Definition 9.5 in [3].

Definition 1.1 A linear operator C is said to be separable if C =
B ® A for some B and A.

Obviously due to the product term, there is not a unique solution,
if it exists; every {yA,~y B} is also a solution for v # 0. While
it is straightforward to show how to save complexity (typically sav-
ings from M? to M log, (M) are significant), to show if a vector or
matrix is separable or not is not an easy step.

1.1. Relation to Prior Work

Quite recently there were entire IEEE Signal Processing Magazines
devoted to tensor algebra (May2014) and the topic Big Data (Sept.
2014). While tensor based methods were originally introduced more
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than a hundred years ago in differential geometry, such methods have
been in use for several decades only by a few researchers. They re-
cently have received a lot of attention in the context of screening
vast amount of data, typically from the Internet but also from other
sources such as video cameras in security contexts. The original
problems date back into the 60s with pioneering work of Tucker [4]
and [5-7] in phonetics; they are nowadays mostly referred to as
CANDECOMP/PARAFAC (CP) [8]. Rediscoveries by Sidiropou-
los, Bro, and Giannakis [9] pushed the field forward as now im-
proved iterative methods were available that offer to decompose a
given data set into much smaller but information preserving units. A
common problem is to decompose a tensor into its constituents, e.g.,

C=A1®ARQ A3 (1

in which the matrices are of smaller dimension. Typically multidi-
mensional data streams are described this way, one index often refers
to time or events, e.g., video streams. Tensor applications are in
compressing information [10], improvement of incomplete and inac-
curate observations [11], matrix completion methods [12], and data
mining [13] to name a few. Good overviews are available in [14-19].
The particular problem of this contribution has been tackled by van
Loan and Pitsianis [20], however under the condition that the matrix
in question is perfectly decomposable.

1.2. Our Contribution and Paper Structure

In the following Section 2 we show several fundamental properties
in the context of an Least Squares (LS) approach to uniquely de-
compose a single tensor product of a two-way tensor. Based on the
well-known LS orthogonality property we reveal several desirable
properties that can be utilized in the context of data mining, data
compression and matrix completion. We extend the approach in [20]
towards arbitrary matrices and present the problem rigorously in an
LS context including low-complex iterative approaches. In Section 3
we present a low complexity iterative method to solve the problem.
In Section 4 we briefly summarize Least Mean Squares (LMS) al-
gorithms to learn structured multiple-input multiple-output (MIMO)
systems under the condition of input and output observations and we
extent such description in Section 5 where we propose gradient type
solutions. While the simple rank one tensor solution (A; in (1) are
vectors) was proposed in [21], we will here present the result for ma-
trices { A;} rather than vectors {a;}, describing an MIMO system.
In Section 6 we validate our result by simulations and in Section 7
we conclude the paper with some remarks.

Notation: We describe the Hermitian of a vector or matrix by up-
perscript H and denote the Kronecker product by ®. All signals are
considered complex-valued. The operator vec() realigns a matrix
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column by column into a vector. Further we denote the set of right
side eigenvectors of a matrix by evec().

2. LINEARLY SEPARABLE OPERATORS

Theorem 2.1 Consider a matrix C € CM M2 i A =
N1P1, Mo = NoPs, with NyNo > 1 and Py P> > 1, i.e.,

Ci1 Ci2 Cip,

Co Cao Cap,
C =

CP11 CP12 CP1P2

with Cpp € CNVN2 ke = 1,2 .. Pi;l = 1,2,...,Ps. There
uniquely exist (up to a phase') two matrices A € CN1*N2 B ¢
CPYP2 with | A||r = 1 such that

A,B) = in||C-B® Al

(A,B) = argmin | ® Allr

in the LS sense given by the eigenvector associated to the largest
eigenvalue:

Py P
a = vec(A) = arg max evecz Z vec(Cri)vec(Cry) ™.
k=11=1

With cj; = vec(Cyi) we obtain for the coefficients by of B:
bn = a' Cimn sm=1,2 ... Pi;n=12 .. P>.

Proof: We first compute the elements of matrix B by LS and obtain:

Py Py

0
55— 2 2 |ICk — buAll% =0 (@)

k=11=1

that is .
_ tI‘(A Cmn) . H
bmn = Tu(ATA) & Cm 3)

due to the norm constraint on A. We now have to minimize

Py Pa
minE E
A

k

=11l=1

‘CM - tr(AHCM)AHi @

which is equivalent to minimizing

Py P
. H H H
min E E tr(CriCri) — tr(CriA)tr(A™ Cry). ®)

k=1 1=1
As tr(AHCkl) = af ¢y, we find equivalently

P1 P

. H H H
mping § CLICkl — @ CkICKLA, (6)

k=11=1

the solution of which is given by the eigenvector associated to the
largest eigenvalue:

Py P

a = arg max evecz chlcg. (@)

k=11=1

'If A is a solution, e7? A is also a solution for arbitrary phases ¢.
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While this first theorem provides simple construction of smaller
matrices out of a large matrix, it does not state anything about the
quality of the separation. Even if a large matrix C is separable, it
may encounter additional corruption due to the observation process.
Along the same lines a similar proof has been presented in [20] but
under the condition of perfectly separable matrices. There are also
some further interesting properties deduced from (3), i.e., if C is
{non-negative, positive definite, banded, symmetric, orthogonal, di-
agonal, triangular, stochastic}, so is A and B.

Theorem 2.2 (Orthogonality) Given a set of matrices { A, B} ac-
cording to Theorem 2.1 to separate a matrix C in an LS sense, C
can exactly be represented by

C=B®A+N

with error matrix N being orthogonal onto the tensor product
tr (NH (B A)) —0.
Proof: We write

B®RA = ®)
chlgA

aHCQQA

alci A chlpzA

aleo A aHCQPQA

aHCP11A chPle aHCPIPQA
We consider for each sub-block Cg; of C:
H H H
tr |:(Ckl — Aa CM) Aa Ckl] )

H LS
= Cp; — aa Cp aa ‘¢ = 0.

The following theorem eventually provides a quantitative mea-
sure that further describes the quality of the separation process based
on the previously shown orthogonality principle.

Theorem 2.3 (MMSE) Separating a matrix C in the LS sense, the
corresponding minimum MSE (MMSE) is given by

MMSE = tr(N”N)

Py P

Cki My My — Ckl-
1 2 aHa

k=11=1

Proof: The proof follows from the orthogonality property of LS.

Matrix N allows for various extensions:

e If several partitions of My = N1 P; and M2 = N2 P, exist,
the various MMSE values can be checked and based on those,
it can be decided which partitioning is most suitable to linear
separation. The normalized MMSE value, i.e.,

tr(N”N)
Ni,No, P\, Po) = — =<1 10
(N1, N2, P, P,) (CC) = (10)
provides a convenient measure for the quality of the separa-
tion. Due to this measure we can also find optimal separation
sizes { N1, Na, P1, P>} if they are not given a-priori:
v(N1, N2, Py, Py).

min
Ny Py=M;,NyPy=Mj
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¢ In general the elements of matrix N tell us how “noisy” our
observation of C is. If the observation noise is equally dis-
tributed (stationary), then the noise power is constant over all
areas of IN. If particular parts of C are more corrupted than
others, they can be detected in N. Such procedures are com-
mon in matrix completion methods [12].

 In the context of Big Data often only the correlations are im-
portant and this noisy part N does not contribute to it. How-
ever, if it is anomalies and outliers that are of interest then it
is exactly this part N that needs to be investigated while the
repetitive behavior in the decomposed tensor is unimportant.

Note that we explicitly stressed here the projection property although
affa = 1. In case the uniqueness constraint on A is not satisfied,
this more general formulation of the theorem still holds.

3. ITERATIVE SOLUTIONS

So far all required operations need to apply eigenvalue decomposi-
tions of supposedly large matrices which is of high computational
burden. We are thus interested in alternative low complex forms
which are being presented in the following.

Theorem 3.1 (Alternative Formulation) Constructing the follow-
ing matrix out of vectorized forms ci; of the sub-matrices vec(Cp):
C= [C11, C21,...,€pPy1,C12,C22,...,CpP2,...C1 P, C2P5, ..., CP1P2]’
we can alternatively write

alCCHa
a = arg max o
alla

and

b= CHa,
where a = vec(A) and b = vec(B). Thus if we decompose C* =
uxvi, we find that a = Viax and b = OmaxUiay, L.€., the right
and left singular vectors corresponding to the largest singular value.

Note that if matrix C is separable without observation errors,
then all vectors ¢y, are linearly dependent and thus the only non-
zero singular value of C is omax-

Theorem 3.2 (Iterative Formulation) Consider matrix C from
previous Theorem 3.1 and iterate the following steps, starting with
ay.’

by = C"a (a1
a, = Cby (12)
Ax
= = 1
T Tl o

Starting with a randomly selected vector ai, the iterative scheme
ends with probability one at the desired value a and b ends at b*.

Proof: Consider a random starting value a; = Vx. We then obtain
61 =UXx

and
as = vyix,

Thus in general a; = VX?*x. The largest term in X, i.e., Omax
will grow fastest. Since aj is normalized after every step, even-
tually only limy oo @ = Vmax remains. As a consequence,
limg 0o Bk = OmaxUmax. If X is by chance selecting a single

2533

right singular vector of é, that is not vmax, the iterative algorithm
stalls at this value. As we randomly select starting vectors and there
are only N1 N2 — 1 of such non-favorable singular vectors, we pick
them with probability zero and thus with probability one, the scheme
converges.

Note that if observation matrix C is without noise, the iterative
scheme converges in two steps due to its single singular value omax.
As long as the observation noise is sufficiently small, only few iter-
ations are required, making the iterative scheme very attractive from
a complexity and from a (fixed-point) implementation perspective.

4. ROBUST LMS ALGORITHM FOR MIMO SYSTEMS

We first start with the not so common LMS update algorithm in case
the system to identify is an MIMO system. Given the sequence pairs
of input-output vectors {Xy, y } of a system C € CM1xM2

yi = Cxi + Vi,
including observation noise vy, we find the error to be minimized

C, = argménE[ékHék], (14)

& = yi—Cro1xs. (15)

The LMS updates for such error read
2 2 - H
Cr = Cpr_1 + pérxy, . (16)

Following the lines of robustness analysis [22-26], we find the
following relation for the system error matrix C,, = C, — Cy:

ékékH + ﬁkekeg = ék—lékH—l + ﬂk{’kvf, (17)

with the undistorted error vector e = Cr_1xx and the abbrevia-
tions

1

0 = 18

ik X, (18)

e = Py — (1 - @) ex. (19
s s

By computing the trace on both ends, and recalling that tr(A® A) =
| A||%, we can find the following global robustness property.

Theorem 4.1 The LMS algorithm with error term (15) and update
(16) is globally robust:

~ 2
o] 52 et
= (20)

~ 2 ~ P
o+ it
withy = 1iff 0 < py < fig. Further properties are:

e The algorithm behaves robust for i, < pr < 20 with 1 <
v < oQ.

« IFSSN L Ivell3 < Vi < oo, the undistorted error vectors
er — 0.

o If furthermore the sequence {xy} is persistently exciting, the
system error matrix Cy, — O.
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5. LMS FOR MIMO SYSTEMS WITH KRONECKER
PRODUCT STRUCTURE

We now derive an LMS algorithm with substantially less complexity,
taking advantage of the tensor product of C. In particular we take
advantage of the identity

C=B®A = (Ip, ®A)(Ba1y,) = (BoLy, )(Ip,®A) (21)

which allows to partition the algorithm. Here, (Ip, ® A) €
CPN1xPiN2 and (B®1Iy,) € CPV2XN2P2 whereas (B® 1y, ) €
CPNx PNt gnd (Ip, ® A) € CN172%FP2N2 We then reformulate
the matrix vector product into equivalent forms

Cx, = (IP1 X A) (B ® INz)Xk = (IP1 [029] A)Zk (22)
B eIy )(Ip, ® A)xp = (B Iy, )ur. (23)

CP1N2><1 (CP2N1><1

The so obtained vectors zx € and uy €
With these useful identities, we can now derive a gradient type
algorithm in terms of the regression vector z; to update the coef-
ficients in A and in terms of uj to update the coefficients in B.
Corresponding to LMS update (16), we now find the following
Ip, @ Ay =1p, @ A1+ parlyr — (Ip, © Ag_1)zx)2t
(24)

B, ®1In, =By1 @ In, + psilys — (Be1 © In,)ig]ay

(25)

with the estimates ur = (Ip, ® Ak,l)xk and z;, = (Bk,l ®
In, )%k . Note that the two update partitions are not equivalent to the
original LMS algorithm as they minimize different cost functions

A, = arg mAin E[égvké,q,k}, (26)
éar = yr— (Ip, @ Ap_1)z, 27)
B, = arg mPi’n Eé5 1ép,k], (28)
épk = yi— (Bro1®In,)y 29

The error vectors €4, and ep are conditioned on By 1 and
A _1, respectively. They are only equivalent if the corresponding
otherterm Br_1 = Band Ap_1 = A.

Note further that the LMS updates in the form of (24) and (25)
do not exhibit the full potential of the algorithm. As the terms A
as well as B appear multiple times in the updates, the estimates
can be further improved by averaging them and at the same time
complexity can be saved. For this we need to partition block-wise
the error vector e, € ChNix1ino Py pieces of length N; each:
€.k = €U_1)Ny+1...iNy,k for I = 1,2,..., P;. Correspondingly
we partition also z;x = i(l—l)Ng-ﬁ—lmlNg,k forl =1,2,..., P; and
Wr = Ug—1)N+1..n8; & for L = 1,2, ..., P,. We then find:

A, = Ak&-l-ﬂ;’kEkaH (30)
1

B, = B, +!EEgTU; 31)
N

where we introduced the following matrices

_ _ _ Ny X P
E. =[eir €4%,...€p 0k €C7

U, = [Q1k, U2k o, Upyk); Lk = [Z1,k, 22,k -, ZPy k)
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Updates (30) and (31) are just a first straightforward form that simply
averages all estimates. More sophisticated forms can be considered
in which for example the quality of the a-posteriori errors is also
taken into account to decide which terms were more hampered by
noise than others. Nevertheless, for our further investigations we
will remain with this simple update rule obtained by averaging.

Complexity: We first access the complexity of the standard LMS al-
gorithm with update (16) to have a reference. For the computation of
the error vector €, we require My M2 MAC operations and the same
complexity is required for the updates, thus the overall complexity is
2M, Mo per update step.

For the Kronecker based updates we first have to compute vec-
tors Uy and 2z requiring N1 N2 Py and Py P> Ny, respectively, thus
Mi(N2 + P») together. To compute the error costs additional
N1 Py min(Nz, P) are required depending on whether we compute
the error based on G, or ;. Finally for the updates of Ay we
need N1 N2 P, operations and for B we need N1 P, P, operations,
all together M1 [min(N2, P2) 4+ 2(N2 + P»)] which becomes sub-
stantially less compared to the standard LMS algorithm when the
matrices become large.

6. PERFORMANCE

In this section we run a Monte Carlo (MC) experiment with a struc-
tured MIMO system C of dimension M; = 50 = 10 X 5 and
M, = 21 = 3 x 7, whose entries are complex-valued Gaussian
distributed and C is normalized by its Frobenius norm. We employ
Gaussian input symbols of unit variance and additive noise of vari-
ance o2 = 0.001. We compare the standard LMS for the 50 x 21
matrix with the proposed tensor LMS algorithm by computing the
relative system mismatch |C — Cy||%/||C||%. Fig. 1 depicts the
results for the standard matrix LMS algorithm after 20 MC runs. As
expected for a normalized step-size pr, = «/||xx||3 we find fastest
convergence at o = 1 and stability bound at o = 2.

Fig. 2 exhibits the results for the tensor LMS algorithm.
Here, we applied the normalization pa, = oPy/||2k|3, pe.r =
aNi/||Gx|3. As we have now substantially less parameters to
estimate, we can learn faster and with higher precision as shown
by the smaller steady-state values. Note that we have not imposed
the uniqueness constraint on A as we were only interested in the
resulting matrix C. A straightforward normalization would sub-
stantially add on the complexity. However, there are alternative
solutions possible, see e.g. [27,28]. Due to space constraints the
algorithm is not presented here in detail but the procedure can be
downloaded from our web page https://www.nt.tuwien.
ac.at/downloads/featured-downloads

7. CONCLUSIONS

The presented concept is just a first step into the identification of
Kronecker structured MIMO systems. While the concept shows
large potential to identify the system with less complexity and higher
accuracy, many questions about its robustness and the prediction of
learning rate and achieved steady-state values remain open.
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