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ABSTRACT

Relative transfer functions (RTF) between microphones can
often be estimated accurately but only for certain frequen-
cies. For example, this happens in situations where the RTF
is estimated from a noise-free signal of a target source whose
spectrum does not span the whole frequency range. By com-
bining a conventional RTF estimator and a selection of the
active frequencies, an incomplete measurement of the RTF
is obtained. We propose to retrieve the whole RTF estimate
through finding the sparsest representation of the incomplete
measurement in the discrete or continuous time-domain and
compare both approaches. The RTF estimates are evaluated in
terms of attenuation rate that measures the target signal can-
cellation at the output of a blocking matrix. It is shown by
experiments that the reconstructed estimate can achieve sig-
nificantly better attenuation than the initial (complete) esti-
mate.

Index Terms— Relative Transfer Function, Blocking
Matrix, Generalized Sidelobe Canceller, Sparse Approxima-
tion, LASSO, Atomic Norm, Semidefinite programming

1. INTRODUCTION

Two-microphone noisy recordings of a target source can be
described as

z1(n) = s(n) + z(n),

zr(n) = {hre * s}(n) + zr(n) 1)

where n is the discrete-time index, * denotes the convolution,
x1, and xR are, respectively, the signals from the left and right
microphone, s is the response of the target signal on the left
microphone, and 21, and zgr are the other signals referred to
as noise. The filter .. denotes the relative impulse response
(RelR) between the microphones related to the target source.
It is determined by the target’s position, mutual position of the
microphones, and it depends on the acoustical environment.
The estimation of h,e from noisy recordings is a key step
to solve many challenging tasks of multichannel audio signal
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processing [1, 2]. For example, h,¢ can be used to construct
an effective filter that cancels the target signal. Let its output
be defined as

z(n) = {h*xx}(n) — zr(n) @
~ {hya * z1.}(n) — zr(N).

The latter approximation follows from (1) when h ~ Rrel.
Hence, the output signal z(n) provides key information (ref-
erence) about noise signals in (1), which is crucial, e.g., in
noise reduction systems [3]. The residual signal-to-noise ra-
tio measured in z(n) reflects the degree of the target signal
attenuation and is therefore a relevant criterion to validate A.

The frequency-domain counterpart of h, is referred to
as Relative Transfer Function (RTF) and will be denoted as
Hgrr(0), 8 € [0,27). The problems of estimating hye or
Hgrr are equivalent tasks from this general point of view.

The practical requirement is to estimate the RTF from
short intervals of recordings, because the target may change
position and also the environment can be changing (air tem-
perature, objects positions, noise). Therefore, the model (1),
in which h, is constant over time, is typically valid only dur-
ing short intervals of length below one second. Several esti-
mators have been proposed, some of which admit presence of
noise signals in the recordings [1, 2, 4]. Especially, methods
based on blind source separation can be used [5, 6]. How-
ever, the problem is still challenging as h,.; is typically long
(has thousands taps) and dense. Some methods aim to learn a
model of RTFs that were measured for different positions of
the target source within a confined area [7, 8].

Recently, a new concept has been proposed in [9] based
on using incomplete measurement of the RTF, which is draw-
ing on ideas of Compressed Sensing [11]. The incomplete
RTF (iRTF) is an RTF estimate whose values are known only
for some frequencies. The iRTF can be obtained, for exam-
ple, through applying any conventional RTF estimator where
some of the estimated values are ignored. A reason to leave
out an estimated value could be low target-to-noise ratio for
the given frequency.

Then, the task to reconstruct the whole RTF poses an in-
verse problem. To solve, the fact that RelRs are fast decay-
ing (compressible) sequences is used. Such sequences, al-
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though being long and dense, can be efficiently approximated
by sparse surrogates; see, e.g., [10]. Convex programming
based on f;-norm minimization is used to find the optimum
sparse representation.

In this paper, we propose to reconstruct the incom-
plete RTF through finding its sparse representation in the
continuous-time domain and compare it with the reconstruc-
tion done in the (oversampled) discrete time domain.

2. PROBLEM FORMULATION

We will consider a model where h.¢ is a linear combination
of S digital fractional delay filters, that is

S
hrei(n) = Z agsinc(n — dy), nez, 3)
=1

where sinc(n) = sin(mn)/(mn), ag € R, dy € [0, L — 1] for
£ =1,...,5. Here, S is not known in advance but is assumed
to be much smaller than L. It means that h,. is sparse in the
domain of fractional-delay filters.

The time-domain model (3) involves the assumption that
the target signal (the main wave) and its reflections arrive at
microphones with fractional time differences and that these
reflections are sparse. Although natural sound propagation is
typically more complicated, the model appears to be approx-
imately valid under the hypothesis of ideal reflections (rigid
walls/objects); see, e.g., [12, 13].

Without loss on generality, let the delays d, be all differ-
ent and L be even. In the special case that the delays are all
integers, h. is a finite sequence of maximum length L. Oth-
erwise, h,q is infinite. The Discrete-Time Fourier Transform
(DTFT) of (3) gives the assumed model of the RTF, that is,

S
HRTF(e) = Zage_idw. 4

{=1

Conventional methods operating in the Discrete Fourier
Transform (DFT) domain estimate the RTF on the regular grid
of [0,27). Let Hrrr(0)) denote such estimate of Hgrr(6)
for the DFT length L; 0, = 27k/L, k = 0,...,L — 1.
ﬁRTF(Ok) is conjugate symmetric along k = L/2, so the
values for Kk = L/2 4+ 1,...,L — 1 do not carry any extra
information. We emphasize this fact, because the estimator in
Section 3.1 does not necessarily obey this symmetry, respect-
ing the fact that the values of Hrrr(6)) obey the symmetry
only if h,e is finite.

An estimate of the RFT is referred to as incomplete
measurement if Hgrr(6)) is available only for k € S C
{0, ..., L/2}. The central goal of this paper is to reconstruct
the unknown values Hrrr(6y) for k£ ¢ S in some optimum
sense given only the incomplete measurement. The goal
could also be to improve (denoise) the estimates Hrrr(65)
for k € S, but here we focus only on the former task due to
limited space.
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3. PROPOSED SOLUTIONS

Recent advances in convex programming bring new methods
to find sparse representation of incomplete data in a given
(possibly infinite) set of atoms called the atomic set, denoted
as A. The authors of [14] proposed a general framework
based on atomic norm minimization. The atomic norm is a
special case of the Minkowski functional measuring distance
between a point and the convex hull of A. It was shown that a
linearly (or also quadratically [15]) constrained minimization
of the atomic norm, with high probability, yields solutions
that can be formed as a sum of a few atoms.

The linearly constrained optimization program is, in gen-
eral, formulated as

rr;in [Ix].4 W.LL. y = &x, 5)

where @ stands for a measuring matrix, y is the (incomplete)
measurement, and the atomic norm is defined as

Ix|.4 = inf{t > O|x € t conv(A)} (6)

where conv(.A) denotes the convex hull of A.
In this paper, we apply this general idea to the problem of
reconstructing the RTF.

3.1. Continuous Domain Reconstruction

Let x represent the reconstructed RTF, that is xp41 =
Hgrr(0;), k = 0,...,L — 1. The available iRTF is rep-
resented by y, that is yp+1 = fIRTF(GJ-k) where § =
{J1,---d1s)}- @ is equal to the L x L identity matrix I
with only those rows whose indices are in S; let denote such
submatrix with the subscript - s, that is, ® = Is.

The set A is defined as such that it contains transfer func-
tions of all fractional delay filters and their complex-unit mul-
tiples (due to symmetry of A4), that is

A={e?[1e" .. LDIT g e 0,2n], ¢ € [0,27]}.
@)
As expected by the theory, the solution of (5) should be a
linear combination of a few elements of 4. This reflects the
requirement that S in (3) is “small”.

The problem considered here is exactly the same as the
one in [15, 16] where line signal spectra are reconstructed
from compressed measurements using an off-grid approach.
It was shown that ||x|| 4 where A is given by (7) can be ex-
pressed as the solution of a semidefinite program

toep(u) x
( <* t) EO}, (®)

where toep(u) is the hermitian Toeplitz matrix whose first
column is u, wuy is the first element of u, x* is the conjugate
transpose of x, and B > 0 means that the matrix B is positive

x4 = min { Luy + ot
XA—IEIUH §u1+§
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semidefinite (PSD). The proof is based on the Vandermonde
decomposition lemma for PSD Toeplitz matrices; see Propo-
sition 2.1 in [16].

Now, it follows that (5) can be formulated as

1 1
min {2u1 + =t <toe1:>>k(u) T) =0,y = st} )

t,u,x 2 X

Once (9) is solved, the elements of x yield the recon-
structed values of Hrrr(6y) for k =0,..., L — 1. As noted
in Section 2, x is not conjugate symmetric in general. A sim-
ple way to obtain a practical RTF estimate (corresponding to
a finite filter) is to symmetrize the vector according to the first
half of its elements. Note, however, that this approach may
bring certain loss in accuracy. An alternative way is to use
properties of the dual solution of (9) that enables to identify
parameters of the model (3); see Section 2.2 in [16].

3.2. Discretized-Time Domain Reconstruction

The other possibility to reconstruct the RTF is to find the
sparsest RelR representing the incomplete measurements in
the discretized-time domain. In view of the general formula-
tion (5), we define the atomic set as

A={xe,|k=1,...,qL}, (10)
where e, denotes the kth column of the ¢L X ¢L identity
matrix; g determines the discretization of the time axis and
should be generally higher than 1/L (integer values of ¢ are
of practical interest). Now, the atomic norm corresponds to
the ¢, norm (defined on R9%).

Compared to the previous subsection, here x represents
the reconstructed RelR on the time-axis discretized by factor
qL. This inherently assumes that h,e; has finite response of
maximum length ¢ in that domain. The value of the vector
y is the same as in the previous section. The measuring matrix
& is thus equal to Fs where F is the matrix of the DFT of the
length ¢ L. Hence, (9) takes the form

min ||x[|; wrt y = Fsx, (11)
xeRIL

which is indeed the well-known basis pursuit program [20].
In fact, the approach proposed in [9] corresponds with the
one proposed here when ¢ = 1.

A typical way to proceed with the solution of (11) is to
resample it at 1/¢ times back to the original discrete-time do-
main, thereby obtain the reconstructed h,e of the length L.
By applying the DFT to the reconstructed h,.; wWe arrive at
the reconstructed RTF.

4. EXPERIMENTS

In experiments, we consider situations when the RTF is mea-
sured in ideal noise-free conditions (y;, = yr = 0) but the

396

training signal emitted by the target source has spectrum that
does not cover the whole frequency range'. In that case, it is
difficult to estimate the whole RTF. By taking only the fre-
quencies that are sufficiently active, an incomplete RTF is ob-
tained. The methods described in this paper are applied to
reconstruct the whole RTF.

4.1. Artificial ReiR Obeying the Model (3)

Here, the training signal is a white Gaussian noise passed
through a FIR? band-stop filter of length 200 with cutoff band
from 100 Hz to f;, Hz, where f;, ranges from 200 Hz to 7 kHz;
the duration of the signal is 1s; the sampling frequency is
16 kHz. The signal on the left microphone s(n) is the training
signal convolved with a room impulse response taken from
the database [17] (159 = 160 ms, the source-microphone dis-
tance is 1 m, the angle is 0°). The signal on the right mi-
crophone is equal to s(n) convolved with an artificial ReIR
generated according to the model (3) with L = 128, S = 6
and a; = 1. The amplitudes a,, ¢ = 2,...,6 were generated
uniformly at random from [—0.5, 0.5] and sorted according to
their magnitudes. Similarly, the delays d,, ¢ = 1, ..., 6, were
taken from [0, L — 1] but such that miny |dy, — d¢|/L >
1/|(L —1)/4] in order to meet the condition of Theorem 1.1
in [16]. The generated RelR is shown in Fig. 1(a).

Then, the RTF is estimated by selected methods. The re-
sults are evaluated in terms of attenuation rate (ATR) that is
defined as the ratio between the average power of the signals
on microphones and the power of the output of (2) where his
the inverse DFT of the estimated RTF. The testing signals are
generated as described above but without applying the band-
stop filter (the spectrum of the testing signal is almost flat,
influenced only by the room impulse response).

The first compared method estimates /.. using ordinary
least-squares approach (LS) minimizing ), [{h * 21.}(n) —
xr(n)]? over h of length L. The DFT of the LS solution pro-
vides an estimate of the whole RTF. This is taken to build up
an incomplete measurement as follows: The power spectrum
of z1,(n) = s(n) is estimated via Welch’s method (function
pwelch in Matlab). Any k& € {0,...,L/2} is put into S
if the kth frequency in 21, (n) appears to be sufficiently active
(its magnitude is higher than one tenth of the maximum power
over all frequencies). This selection reliably rejects frequen-
cies that are missing in the training signal.

Then, the methods described in Section 3 are applied to
reconstruct the whole RTF estimate from the incomplete mea-
surement. The acronym “BP” is used for the methods based
on the solution of (11), which we compute using the SPGL1
package® [18]. For the solution given by (9), computed by
means of SDPT3* [19], we use the acronym “SDP”.

I'This often happens, for example, when the training signal is speech.
2The filter is designed using the window method with Hamming window.
3http://www.cs.ubc.ca/~mpf/spgll

4http ://www.math.nus.edu.sg/~mattohkc/sdpt3.html
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Fig. 1. (a) The original and the estimated RelRs for f, =
3 kHz by (b) LS, (c) BP with ¢ = 1 and (d) SDP.
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Fig. 2. Results of the first experiment in terms of ATR
achieved when the target signal is white Gaussian noise. To
compare, the “optimum” ATR achieved by the true A, trun-
cated to the length L is included.

The results averaged over 100 trials are shown in Fig. 2.
The ATRs are decreasing with growing f, (up to the opti-
mum ATR by the true h,q truncated to length L), because
the missing frequency band [100, f;] Hz is becoming wider.
The ATRs by BP with ¢ > 1 and by SDP are nearly or above
40 dB for f;, < 4 kHz, which is very close to exact identifi-
cation of h,.;. The methods profit from the fact that h,, was
generated according to the assumed (or approximate in case
of BP) model (3). SDP is slightly outperformed by BP with
q > 1for f, < 5 kHz; see the explanation of this accuracy
loss at the end of Section 3.1. The experiments in [16] show
that SDP can identify the parameters of the model (3) with
higher accuracy than BP. Finally, it is worth to note that LS is
outperformed by all the methods considered in this paper for
fv > 800 Hz.

4.2. Real-World Situation

We conducted a similar experiment to the previous one where
the training signal was speech (a female utterance taken from
SiSEC 2013%). The signal was convolved with impulse re-

Shttp://sisec.wiki.irisa.fr/tiki-index.php?page=
Two-channel+mixtures+of+speech+and+real-world+
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Fig. 3. Results of the second experiment in terms of average
ATR. For comparison, the ATR of 13.9 dB was achieved by
LS when computed using a white noise (the whole frequency
range) training signal.

sponses from the database [17] corresponding to the target
source position at 60° (at the distance of 1 m), by which the
signals on microphones were obtained.

The signals were divided into intervals of length 1 s. On
each interval, the RTF estimate using LS (L. = 128) was com-
puted. The incomplete RTF measurement was taken by se-
lecting p percents of the most active frequencies in the left-
microphone signal; p is referred to as percentage. BP and
SDP were then applied. The estimated RTFs were evaluated
using a testing signal, which is 1 s of white Gaussian noise
played from the same position as the training speech (the sig-
nal was passed through the same room impulse responses).

The results in Fig. 3 show that the best ATR is achieved
by BP with ¢ = 8 and by SDP for the percentage® between
70-80%. LS is outperformed by the proposed methods for the
percentage higher or equal to 40%. This, for example, means
that up to 60% of the frequency range could be occupied by
noise.

The computational burden by SDP is significantly higher
compared to BP; the average running times were, respec-
tively, about 15 s and 0.2-1 s on a PC with quad-core i7
2.6 GHz processor.

5. CONCLUSIONS

Sparse approximations of the RTF derived from its incom-
plete measurement have been shown to yield better ATR than
the initial (complete) estimate. In future work, we will con-
sider the de-noising formulation of (5)

min ||x|| 4 W.LL. |[Px —yl|l2 <€ (12)
X

with e > 0, which might improve the current results, espe-

cially, when the incomplete measurements are noisy [15].

background+noise

6Tt should be noted that the optimum percentage strongly depends on the
experiment, so the value 70-80% is not the optimal choice in general; see
also results of experiments in [9].
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The simulations in the paper show that BP with suffi-

ciently high oversampling factor ¢ provides a more practical
substitute for SDP, unless faster methods for SDP exist.
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