
DECENTRALIZED RECONSTRUCTION FROM COMPRESSIVE RANDOM PROJECTIONS

DRIVEN BY PRINCIPAL COMPONENTS

James E. Fowler

Department of Electrical and Computer Engineering

Distributed Analytics and Security Institute & Geosystems Research Institute

Mississippi State University, USA

ABSTRACT

The decentralized reconstruction of data acquired in a sen-

sor network via compressive random projections is consid-

ered. Assuming each node acquires a signal while simultane-

ously reducing its dimensionality, the proposed decentralized

reconstruction recovers each signal to its original dimension-

ality with the reconstruction process being distributed across

the network such that each node performs limited computa-

tion with limited communication with its neighboring nodes.

In contrast to prior decentralized reconstructions driven by

sparsity-based compressed-sensing techniques, the proposed

approach employs reconstruction based on principal compo-

nent analysis using an iterative consensus algorithm to calcu-

late the required covariance across the network. Experimental

results reveal that the performance of the proposed decentral-

ized reconstruction approaches that of the original centralized

algorithm as the number of consensus iterations increases.

Index Terms— random projections, principal component

analysis, decentralized reconstruction, sensor networks

1. INTRODUCTION

The past decade has witnessed an explosion of interest in

signal-acquisition paradigms in which a signal is sensed and

reduced in dimensionality simultaneously by a sensing de-

vice. Much of this interest has arisen as the result of the

advent of sparsity-driven compressed-sensing (CS) recon-

structions, although other formulations are possible, such as

the reconstructions of [1, 2] based on principal component

analysis (PCA). Regardless of specifics of the recovery side

of the system, the appeal of CS and similar reconstructions

stems from the promise of lightweight sensing architectures

which typically implement simultaneous sensing and di-

mensionality reduction via compressive random projections

directly in the hardware of the sensing device. Such com-

pressive random-projection sensing of signals is particularly

well suited to sensing environments what are severely con-

strained in resources such as computation, storage, power

consumption, and communication bandwidth. In essence,

this sensing paradigm effects a shift in resource burden from

the sensing side of the system to the reconstruction side in

contrast to traditional communication systems which feature

resource-intensive encoders.

It can be argued that a sensor network is a natural fit for

simultaneous sensing and dimensionality reduction since the

individual sensor nodes are often highly constrained in their

access to computation, memory, power, and other resources.

In such a sensor network, each sensor node individually ac-

quires a signal directly in a reduced dimensionality, and the

resulting signal measurements are then feed into a reconstruc-

tion process to recover the signal in its original dimension-

ality. The most straightforward paradigm for accomplish-

ing this reconstruction is via the transmission of the signal

measurements from all the individual sensor nodes to some

central node, or “fusion center.” In contrast to the resource-

constrained sensors, this fusion center is assumed to be a pow-

erful, resource-rich processor capable of handling the inten-

sive demands entailed by the reconstruction of the entire col-

lection of sensed signals. Such a distributed sensing frame-

work employing a CS-based reconstruction at the fusion cen-

ter was proposed in [3–6], for example.

However, it has been recognized (e.g., [7, 8]) that such

centralized reconstruction is not always feasible. In certain

settings, a fusion center may not be available, or may be in-

sufficiently powerful to handle the reconstruction for a net-

work of extremely large size; alternatively, the network may

not have sufficient bandwidth to handle the communication of

the signal measurements toward a single point, again, particu-

larly if the network has an exceedingly large number of nodes.

In such situations, a decentralized reconstruction in which the

reconstruction computation is distributed throughout the en-

tirety of the network, with each sensor node performing lim-

ited computation with limited communication with neighbor-

ing nodes, may be the preferred—or even the only possible—

solution. Such decentralized reconstruction has been pro-

posed previously for CS as well (e.g., [7–12]).

In this paper, we also consider a decentralized reconstruc-

tion of signals acquired with reduced dimensionality in a sen-

sor network. However, in contrast with prior work such as

[3–12], we employ a PCA-based reconstruction rather than a
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reconstruction using sparsity-based CS, as it has been demon-

strated [1, 2] that such PCA-based reconstructions can sig-

nificantly outperform their corresponding CS-based counter-

parts. Specifically, as the primary contribution of the present

work, we formulate a decentralized version of the PCA-driven

reconstruction proposed in [2]; at the core of the proposed

process is a covariance estimate by iterative consensus. Ex-

perimental results reveal that the proposed decentralized vari-

ant approaches the performance of the original centralized al-

gorithm as the number of consensus iterations increases.

Before detailing specifics, we note that our proposed ap-

proach bears some resemblance to several formulations de-

scribed as “distributed compressed sensing” (DCS) in prior

literature. Perhaps most commonly, DCS has referred to a

framework originating with [3] in which sensors acquire mul-

tiple distinct signals that are jointly sparse, but with central-

ized reconstruction of the entire collection of signals taking

place in a fusion center (see also, e.g., [4–6]). On the other

hand, [7, 8] describe an alternate DCS framework in which

sensors acquire multiple noise-corrupted versions of the same

signal, but with decentralized reconstruction of the single sig-

nal being sensed. However, the approach we consider here is

more in the spirit of DCS as formulated in [11, 12] which con-

sider sensing of distinct yet mutually correlated signals as in

[3] but use a decentralized reconstruction in the style of [7, 8].

However, in contrast to [11, 12], our approach eschews CS in

favor of a PCA-based reconstruction that we describe next,

first in its original centralized form and then in our proposed

decentralized variant.

2. BACKGROUND

Consider a network of M sensors, each acquiring a single

N -dimensional signal xm ∈ ℜN . However, further consider

the situation in which the signal acquisition is “compressive”

in nature; i.e., each sensor in the network simultaneously ac-

quires its signal and reduces dimensionality via an N × K
measurement matrix Pm such that

ym = PT
mxm, (1)

where ym ∈ ℜK , and K ≪ N . The subrate is defined as the

ratio K/N . We assume that the original signal vectors xm

are mutually correlated. We assume also that Pm is different

for each sensor and is known only to sensor m and not to the

other sensors in the network. Finally, each Pm is orthonormal

in the sense that PT
mPm = I. The task at hand then is to re-

construct signal xm as approximation x̂m from measurement

ym at each sensor node.

The straightforward approach is to use a centralized re-

construction framework. That is, each sensor sends its mea-

surement ym (and Pm as well) to some central node, or fu-

sion center, which then applies some suitable reconstruction

algorithm on the entire dataset to produce the collection of

x̂m vectors. A simplistic approach would be to apply any of

a number of CS reconstructions individually to the vectors,

although CS reconstructions designed specifically for collec-

tions of correlated vectors (e.g., [3, 13]) would likely perform

significantly better. However, it has been demonstrated that

reconstructions based on PCA [1, 2] can outperform CS-based

reconstructions by a wide margin.

For example, the PCA-based reconstruction proposed in

[2] approximates the covariance of the dataset as

Σ̂ =
1

M

M
∑

m=1

PmymyT
mPT

m, (2)

after which the first principal component, ψ1, of the dataset

{xm}Mm=1 is approximated by the first eigenvector, ψ̂1, of Σ̂.

Subsequent principal components are then determined via a

deflation procedure which first produces a least-squares esti-

mate [1] of the dataset,

x̂m = ψ̂1

(

PT
mψ̂1

)+

ym, (3)

which is then removed from the measurements,

y′
m = ym −PT

mx̂m. (4)

The deflated measurements {y′
m}Mm=1 are then fed back into

(2), and the process is repeated L − 1 times to approximate

L principal components {ψ̂l}
L
l=1 and to produce final recon-

struction

x̂m = Ψ̂

(

PT
mΨ̂

)+

ym, (5)

where Ψ̂ =
[

ψ̂1 · · · ψ̂L

]

.

3. DECENTRALIZED RECONSTRUCTION

The centralized reconstruction presented above focuses com-

putational burden on a single central node which performs

(2)–(5) for the entire dataset. Additionally, the network is bur-

dened by substantial communication, as all nodes must trans-

mit their ym, along with their Pm, to this fusion center. The

resulting computation and memory load on the fusion-center

node, as well as the communication load on the network, may

not be practical—or even possible—if the number of sensors

M is large.

Fortunately, it is possible to devise a decentralized recon-

struction in which each node in the network performs compu-

tations involving its own local data (ym and Pm) as well as

a small amount of data from a limited number of neighboring

nodes. This reconstruction hinges on a decentralized imple-

mentation of the covariance calculation of (2), the one process

that requires aggregation of all data across the network. We

propose to effectuate such a decentralized version of (2) with

an iterative consensus algorithm for averaging (e.g., [14]).
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Specifically, let the approximation to Σ̂ at node m for it-

eration j be Σ̂
(j)
m . In a synchronous fashion, each node simul-

taneously updates its estimate as

Σ̂(j+1)
m = Σ̂(j)

m +
∑

m′∈Nm

Wm,m′

(

Σ̂
(j)
m′ − Σ̂(j)

m

)

, (6)

where Nm is the set of nodes which are neighbors to node m,

and Wm,m′ is a weight. Although there are a number of ways

to implement the weights, here, we use local-degree weights

[14],

Wm,m′ =
1

max {|Nm| , |Nm′ |}
, (7)

which can be determined by each node with only limited com-

munication with its neighbors.1 It has been shown [14] that

iterative calculation of (6) will converge to the result of (2),

lim
j→∞

Σ̂(j)
m = Σ̂, (8)

such that all nodes eventually produce the same covariance as

would be used by the central node in the centralized recon-

struction outlined in Sec. 2. Each node can then separately

calculate the first eigenvector ψ̂1 and perform the deflation

procedure of (3)–(4) to produce its new measurement y′
m.

This process is repeated for all L eigenvectors, using a new

application of the decentralized covariance (6) each time. Fi-

nally, each node applies (5) separately to produce its recon-

structed vector x̂m. We note that, in (6), it suffices to calcu-

late only the upper-triangular part of the covariance matrix, as

each node can complete the rest of the matrix using symmetry.

While the nodes of a real sensor network would imple-

ment (6) as written, in the experimental results that follow,

we instead merely simulate its network-wide effect over J
consensus iterations. Specifically, we define Wm,m′ = 0 for

m′ /∈ Nm, such that we collect the weights into M × M
matrix W. Then, we define the 1 × N(N + 1)/2 vector

z
(j)
m as the upper-triangular part of matrix Σ̂

(j)
m reordered as a

row vector, assembling all M of these vectors as the rows of

M ×N(N +1)/2 matrix Z(j). Then, the network-wide state

at iteration J is

Z(J) = WJZ(0), (9)

where we initialize with z
(0)
m = PmymyT

mPT
m at each node

[14]. However, when M is large, the matrix power in (9) may

be impractical to compute, in which case, we approximate it

as

WJ ≈ VDJVT , (10)

where D is a diagonal matrix containing the largest d eigen-

values of W, and the columns of V are the corresponding

eigenvectors. Below, we use d = 10.

1Note that (6) and (7) require that each node be aware of its connections

with only its immediate neighbors and not the topology of the network as a

whole.

As a final note, we observe that [15] also proposes a

decentralized covariance calculation; however, in contrast

to the “outer-product” covariance (size N × N ) produced

by (2), [15] considers the “inner-product” covariance (size

M × M ). A decentralized calculation of the latter is some-

what more complicated than (6) and involves a decentralized

power method.

4. EXPERIMENTAL RESULTS

We now experimentally compare the proposed decentralized

reconstruction of Sec. 3 with the usual centralized reconstruc-

tion of Sec. 2. Decentralized processing takes place in a sen-

sor network consisting of M = 10, 000 nodes. In this net-

work, each node is connected to at least two neighbor nodes

in order to ensure that the network is strongly connected; ad-

ditional edges are added at random so that the average number

of neighbors (i.e., the expected degree) for the nodes is 3 (i.e.,

E
[

|Nm|
]

= 3). The data at each node in the sensor network

takes the form of a single vector with dimensionality reduced

via a random projection. As example data, we use pixel vec-

tors extracted from a single hyperspectral image; for this, we

employ the well-known AVIRIS images “moffett,” “jasper,”

and “cuprite,” each having an original spectral vector dimen-

sion of N = 224. This dimensionality is reduced to K = 67
(i.e., a subrate of K/N = 30%) by orthonormal measurement

matrix Pm chosen randomly for each node.

Fig. 1(a) shows the quality of reconstruction in the form

of a vector-based signal-to-noise ratio (SNR) [16] averaged

over all vectors of the network for the “moffett” dataset. In

Fig. 1(a), we vary the number of iterations, J , devoted to

the average-consensus process ((6), simulated as (9)) at the

heart of the proposed decentralized reconstruction; J is di-

rectly related to both the time it takes for the sensor network

to arrive at the reconstruction as well as the total communi-

cation bandwidth expended in doing so. We see that a sin-

gle iteration of average consensus produces a reconstruction

within 2.5 dB of the centralized reconstruction, with the de-

centralized performance approaching to within 0.15 dB of the

centralized performance after 100 iterations. Similar results

are seen for “jasper” and “cuprite” in Figs. 1(b) and (c), re-

spectively. As a point of reference, a centralized CS-based

reconstruction using the multi-task Bayesian CS algorithm of

[13] produces SNRs of 18.9 dB, 17.9 dB, and 14.9 dB for the

“moffett,” “jasper,” and “cuprite” data, respectively.

Similar convergence to centralized performance is also

exhibited in the angle of difference, ξl, between eigenvector

ψ̂l produced by the reconstruction and the true eigenvectorψl

of the data. For example, Fig. 2 depicts ξl for the first three

eigenvectors of the “moffett” data. We see that, after 100 it-

erations, the decentralized eigenvectors are nearly identical to

those produced by the centralized algorithm.
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(c) Cuprite

Fig. 1. Average SNR for centralized and decentralized recon-

structions as the number of consensus iterations J varies.
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(b) Second eigenvector
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(c) Third eigenvector

Fig. 2. Angle ξl between reconstructed eigenvector and true

eigenvector as the number of consensus iterations J varies.
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5. CONCLUSION

In this paper, we proposed a decentralized implementation of

the PCA-based reconstruction of [2]. Assuming that individ-

ual nodes of a sensor network each acquire a signal and si-

multaneously reduce its dimensionality by employing a com-

pressive random projection within the sensor device, the pro-

posed algorithm performs a reconstruction whose calculation

is distributed throughout the sensor network, with each node

performing limited computation with limited communication

with its neighboring nodes. At the heart of this decentralized

reconstruction is the implementation of a covariance estima-

tion via an iterative consensus algorithm which permits each

node of the network to arrive at an approximation of the PCA

basis for the entire collection of data distributed across the

nodes. Experimental results reveal that, as the number of iter-

ations of consensus increases, the performance of the decen-

tralized reconstruction approaches that of the original central-

ized algorithm, with 100 iterations typically being sufficient

to produce nearly identical results.
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