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ABSTRACT

We focus on the use of windows in the frequency domain process-

ing of data for the purpose of Wiener filtering. Classical frequency

domain asymptotics replace linear convolution by circulant convolu-

tion, leading to approximation errors. The introduction of windows

can lead to slightly more complex frequency domain techniques, re-

placing diagonal matrices by banded matrices, but with controlled

approximation error. Other work observed this recently, proposing

general banded matrices in the frequency domain for filtering. Here,

we emphasize the design of a window to optimize the banded ap-

proximation, and more importantly, we show that the whole banded

matrix is in fact still parametrized by a diagonal matrix, which fa-

cilitates estimation. We propose here both some non-parametric and

parametric approaches for estimating the diagonal spectral parts and

revisit in particular the effect of the window on frequency domain

Recursive Least-Squares (RLS) adaptive filtering.

Index Terms— frequency domain filtering, DFT, FFT, window,

periodogram, recursive least-squares, adaptive filtering.

1. INTRODUCTION

Frequency domain processing is a classical topic in Wiener filtering,

especially for the case of long filters. The main motivation is the

reduction of computational complexity since convolution becomes a

simple product in frequency domain and passing between time do-

main and frequency domain can be done with limited complexity

via the FFT. However, the Fourier transform is defined over infinite

time and needs to be approximated by the DFT in practice. There

exists of course approaches to make this transition exact, such as

overlap-add/overlap-save. However, their use in adaptive filtering re-

quires some computational complexity to enforce an assumed finite

length adaptive filter [1], [2]. A somewhat approximate approach is

to work with filterbanks, which attempts to isolate the subbands bet-

ter in the frequency domain. However, subband signals remain cor-

related, which leads to the introduction of crossband filters [3] which

can be further subsampled if the spectral overlap between subbands

is reduced. The work we present here is in fact very much related to

these filterbank approaches.

In audio processing, it is very customary to work in the DFT do-

main, replacing linear convolution by circulant convolution, leading

to approximation errors. In [4], [5], it was proposed to replace diag-

onal system representations in the frequency domain by banded ma-

trices. There were no particular considerations for reducing the size

of the band or the quality of the approximation. Also, no particular
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structure was assumed for these banded matrices. In this paper we

emphasize the design of the window when applying the DFT to win-

dowed data. We then point out that the banded matrices in frequency

domain are in fact parameterized by diagonal matrices, which get

smeared out into banded matrices by the Fourier transform of the

window, which is known. In fact, what is going on here is a form

of subband filtering, with a so-called modulated filterbank, where

the window represents a lowpass filter and the subband filters are

obtained by modulating the window to the various subband center

frequencies, those of the DFT. The subsampling of the subband sig-

nals is non-trivial and depends on the overlap between de windows

of consecutive frames in the time domain.

In this paper we explore first non-parametric approaches for

adapting a Wiener filter in the resulting banded correlation matrices

in the DFT domain. We then consider in detail frequency domain

adaptive filtering using least-squares cost functions.

2. WINDOWING FOR FRAME-BASED PROCESSING

The audio signals considered are by nature non-stationary. If we

can consider the parameters constant during a short time, we can

process the signal in frames (time segments), over which the signal

can be considered stationary, which corresponds to time-invariant

filtering. Many of the signal processing operations (e.g. linear time-

invariant filtering and filter computation) could be largely simpli-

fied by passing to the frequency domain. However, transforming a

frame of signal to the frequency domain directly via the DFT (FFT)

leads to approximations due to the periodic extension of the frame

assumption inherent in the DFT. We shall see later how we can im-

prove these approximations. Just like the original data signal yk will

be cut into a series of windowed frames of length N , a bit like in

the Welch method, a processed signal (e.g. extracted source) will

be reconstructed by superposing its reconstructed windowed frame

segments. Since the window needs to decay towards its edges, con-

secutive frames need to overlap. Let M be the hop size (time jump)

from one frame to the next, then a perfect reconstruction (PR) win-

dow wn requires

∞∑

i=−∞

wn−iM = 1 , ∀n (1)

see the top figures in Fig. 1 for the cases of relative overlap of

(N−M)/N = 50%, 75% (both the individual windows and their

sum are shown for a finite set of windows). Note that one could

consider extensions to non-PR windows, in which the superposition

of windowed signal frames could be followed by a zero-forcing

rescaling with 1/(
∑

∞

i=−∞
wt−iM ) or (multi-window) MMSE ver-

sions thereof. An example of a PR window is a Hann (or raised
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Fig. 1. Perfect reconstruction windowing.

cosine) window

wt =
1

2

[
1− cos

(
2π

t

N

)]
, t = 0, 1, . . . , N − 1 . (2)

The continuity of the window at its edges can be expected to be

reflected in the continuity of the reconstructed signal and help reduce

blocking artifacts (musical noise). The motivations for the window

design will be different however in the parameter estimation part as

we shall see. In a separate approach for parameter estimation and

source extraction, as considered here, different windows could be

used in both parts.

3. WINDOWED DFT DOMAIN PROCESSING

Working in the time domain, we have a full covariance R to work

with. By going to the frequency domain, one typically assumes to

be able to work with a diagonal R because asymptotically, differ-

ent frequency components are uncorrelated. We shall analyze more

precisely the nonasymptotic regime. For the rest of this section, con-

sider parametric spectrum estimation of a signal yk, e.g. using Gaus-

sian Maximum Likelihood (GML). Now, let the current frame of N
samples be y = [y0 y1 · · · yN−1]

T and w.l.o.g. we assumed that the

first sample starts at time zero. Before applying the DFT, the data

get windowed. Let W = diag {w0, w1, . . . , wN−1} and F is the

N × N discrete Fourier transform (DFT) matrix, with inverse DFT
1
N
F∗ = 1

N
FH . Then we shall work with the transformed windowed

data vector

Y = FWy . (3)

The data are assumed to have zero mean so that covariance and

correlation matrices are equal. Note now that y is real, but Y is

complex due to the DFT. Y is strictly speaking non-circular as both

R = EY Y H and EY Y T are nonzero. However, Y is not a gen-

uine complex random vector as only the real vector y is random

and the complex aspect is due to a deterministic transformation. As

a result we can continue as if Y has a circular complex Gaussian

distribution (which corresponds to a real Gaussian distribution with

transposes replaced by Hermitian transposes). Now, all we need for

GML is R. Note that component Yk of Y = [Y0 Y1 · · · YN−1]
T

is in fact the discrete-time Fourier transform F (DTFT) Y w(f) of

the windowed signal evaluated at frequency f = k/N . To consti-

tute R, we shall need the correlations between different frequencies

EY w(f1)Y
w∗(f2). For this consider

Y w(f1) =

N−1∑

n=0

wn yne
−j2πf1n =

∞∑

n=−∞

wne
−j2πf1n yn

=

∞∑

n=−∞

h−n yn = hn ∗ yn|n=0

=
∫ 1

2

−
1

2

H(f)Y (f) df =
∫
W (f1 − f)Y (f) df

(4)

where we zeropadded the finite window to infinity. Now we get

EY w(f1)Y
w∗(f2)

= E
∫
W (f1 − f)Y (f) df

∫
W ∗(f2 − f0)Y

∗(f0) df0
=

∫
df W (f1 − f)

∫
df0W

∗(f2 − f0) EY (f)Y ∗(f0)
=

∫
df W (f1 − f)

∫
df0W

∗(f2 − f0)Syy(f) δ1(f − f0)
=

∫
df W (f1 − f)W ∗(f2 − f)Syy(f)

(5)

where Y (f) =
∑

∞

k=−∞
yke

−j2πfk is the DTFT of the stationary

random process yn with spectrum Syy(f), W (f) is the DTFT of

the window wn, and δ1(f) =
∑

∞

k=−∞
δ(f − k) is the periodicized

delta function. Now let us introduce the vector of DFT frequencies

f = [0 1 · · ·N−1]T /N and the N × 1 vector of ones 1, let W (f)
denote the column vector of W (.) evaluated at the components of f ,

then we can write for

R =

∫
df W (f − f1)WH(f − f1)Syy(f) . (6)

We get in particular for the diagonal elements Rkk =
∫
df |W ( k−1

N
−

f)|2 Syy(f) which is the well-known spectrum smearing appear-

ing in the mean of the periodogram. Now, to limit complexity in

the frequency domain based methods, one should sparsify R as

much as possible. Here is where the window design comes in.

For a properly designed window, W (f) can be neglected outside

of its main lobe (see e.g. the lower right corner in Fig. 1). Note

that from this point of view, a rectangular window is (again) not

a very good choice since the sidelobes are not much attenuated.

If ∆f is the doublesided width of the main lobe of W (f), then∫
df W (f1 − f)W ∗(f2 − f)Syy(f) can be approximated to zero

for |f1 − f2| > ∆f . This means that R can be approximated by

a banded matrix with only ⌈N ∆f⌉ non-zero diagonals. E.g. the

inversion of R can then be done efficiently using the LDU trian-

gular factorization of R in which the triangular factors will also be

banded. Compared to classical frequency-domain asymptotics, the

spectrum gets smeared on the diagonal and spills onto the main sub-

and super-diagonals, leading to correlations between neighboring

frequencies (only). In those classical asymptotics, the smearing

effect of W (f) gets neglected, leading to R = diag {Syy(f)}.

If Syy(f) is sufficiently smooth, the integral in (6) can be ap-

proximated by a sum over frequencies spaced more densely at f ′,

containing multiples of 1/N ′ , where N ′ > N . This can be obtained

by zeropadding the signal from N to N ′ samples and applying the

DFT of size N ′. We then get R′ of the form

R
′ = C(W (f ′)) diag {Syy(f

′)} CH(W (f ′)) (7)

where C denotes a circulant matrix constructed from the vector argu-

ment. The entries of R′ can be downsampled to obtain R if desired.



4. FREQUENCY DOMAIN CRAMER-RAO BOUNDS

(CRBS)

For a Gaussian process with zero mean, the element (i, j) (pertaining

to θi and θj) of the Fisher Information Matrix (FIM) are obtained as

FIMi,j = tr {R
−1 ∂R

∂θi
R

−1 ∂R

∂θj
} . (8)

Here, R is given in (6) and we get for the derivatives

∂R

∂θi
=

∫
df W (f − f1)WH(f − f1)

∂Syy(f)

∂θi
. (9)

In the classical asymptotics, the FIM gets then approximated as

FIMi,j =
∫
df S−2

yy
∂Syy(f)

∂θi

∂Syy(f)

∂θj

=
∫
df

∂ lnSyy(f)

∂θi

∂ lnSyy(f)

∂θj
.

(10)

5. AR MODELING OF SPEECH MIXTURES

The application of the proposed windowed frequency domain pro-

cessing approach to (short-term plus long-term) Autoregressive

(AR) modeling of speech signals in a mixture is considered in [6].

This is done by considering the equivalence of Gaussian Maximum

Likelihood, Optimally Weighted Covariance Matching and Itakura-

Saito distance minimization. The model of periodic signals with

(short-term) AR spectral envelopes is also considered there.

6. NON-PARAMETRIC DFT DOMAIN ADAPTIVE

FILTERING

Wiener Filtering in the DFT domain leads to

X̂ = HY , H = RXY R
−1
Y Y (11)

where both RXY , RY Y are of the form in (7), from which one can

see that one needs to estimate the spectra Sxy(f) and Syy(f). Vari-

ous approaches are possible of course, such as the periodogram and

its variants averaged and smoothed periodogram. These estimates

obviously need to be averaged in time also, e.g. with an exponen-

tial forgetting factor, at the rate at which the overlapping windows

appear, or at a higher rate with a sliding DFT.

Whereas both RXY , RY Y could be estimated in this way, a hy-

brid approach would be to estimate only RY Y in this way, and to

estimate Sxy in RXY with a classical adaptive filtering approach

such as the LMS or RLS algorithms.

As far as carrying out the inverse for R−1
Y Y is concerned, note that

a LDU triangular factorization of a banded matrix leads to banded

triangular factors. Multiplying a vector with the inverse of a banded

triangular factor has the same complexity as mutliplying with the

same factor.

7. FREQUENCY DOMAIN WINDOWED SUBSAMPLED

UPDATING (FWSU) RLS

We shall here work out the details for the windowed frequency do-

main approach applied to Subsampled Updating Recursive Least-

Squares (SU RLS) adaptive filtering. Subsampled updating corre-

sponds to updating once per frame instead of updating sample by

sample. SU RLS was originally considered in [7] where a fast ver-

sion was developed by exploiting the displacement structure of the

Kalman gain and various other matrices that appear in SU RLS.

What we propose here is to introduce (non-rectangular) windows in

the SU RLS formulation, which will allow different fast algorithms,

via the banded frequency domain approximation. This approach

will also provide a link to adaptive filtering in subbands via filter-

banks [3]. In related work, a frequency domain approach for RLS

was developed in [8], with the goal to develop the RLS version of

various frequency domain LMS algorithms, such as the (extended)

multidelay adaptive filter. However, [8] introduces a very rough ap-

proximation (replacing a singular banded matrix by a multiple of

identity) compared to the much more precise approximation intro-

duced here. It is true that for adaptive filtering purposes this approx-

imation is less dramatic since it leads to a Gauss-Newton adaptive

filter with an approximated Hessian compared to RLS.

In what follows, we shall mostly follow the notation of [7] and

we often assume for simplicity that the window lengthL is a power

of two and that the length N of the transversal filter coefficients

HN,k =
[
h1
N,k · · ·h

N
N,k

]H
is such that M = N/L is an integer,

though more general cases can be considered equally well. We shall

introduce the following notation. Let λ ∈ (0, 1] be the exponential

weighting factor, Λ = diag {w(L− 1), . . . , w(1), w(0)} contains

the window, ‖v‖2Λ = vΛvH , ‖.‖ = ‖.‖
I
. The desired response

signal is d(k) and the filter input is x(k). Let

dL,k=




dH(k−L+1)

...

dH(k)



, xL,k=




xH(k−L+1)

...

xH(k)



,

XN,L,k=



XH

N (k−L+1)
...

XH
N (k)


 = [xL,k · · ·xL,k−N+1]

(12)

and XN (i) =
[
xH(i) xH(i−1) · · · xH(i−N+1)

]H
. The WSU

RLS algorithm minimizes the cost function

ξk = λξk−L + ‖dL,k −XN,L,kHN,k‖
2
Λ (13)

where on could replace λ by λL and modulate the window Λ with the

exponential weighting also in order to get an exact correspondence

with exponentially weighted RLS if desired. This cost function (13)

gets minimized for the filter HN,k satisfying the normal equations

RN,k HN,k = PN,k where

PN,k = λPN,k−L +XH
N,L,kΛdL,k ,

RN,k = λRN,k−L +XH
N,L,kΛXN,L,k .

(14)

Continuing with e.g. PN,k, consider a partitioning in M = N/L
subvectors of length L:

PN,k =
[
P 1 H
N,k · · ·PM H

N,k

]H
(15)

then (14) reduces for subvector j to

P j
N,k = λP j

N,k−L +XH
L,L,k−(j−1)LΛdL,k , j = 1, . . . ,M .

(16)

In other words, we have essentially 2M times 2L multiplications

(for e.g. λP j
N,k−L and ΛdL,k) plus 2M times the product of a L×L

Toeplitz matrix with a vector of length L. Such a product can be

efficiently computed in basically two different ways. One way is to

use the overlap-save method. We can embed the L × L Toeplitz

matrix XL,L,k into a 2L× 2L circulant matrix, viz.

X
H

L,L,k =

[
∗ XH

L,L,k

XH
L,L,k ∗

]
= C

(
xH
2L,k

)
(17)



where C(cH) is a right shift circulant matrix with cH as first row.

Then we get for the matrix-vector product

XH
L,L,k−(j−1)LΛdL,k = [IL 0L×L] C

(
xH
2L,k−(j−1)L

) [
0L×1

ΛdL,k

]
.

(18)

The product of a circulant matrix C(cH) with a vector v where c and

v are of length m can be computed efficiently as follows. Let Fm be

the Discrete Fourier Transform matrix for a DFT of length m. Then

using the property that a circulant matrix can be diagonalized via a

similarity transformation with a DFT matrix, we get

C(cH) v =
1

m
C(cH)FH

mFmv =
1

m
FH
m diag

H (Fm c) Fmv

(19)

where diag(w) is a diagonal matrix with the elements of the vec-

tor w as diagonal elements. So the computation of the vector in

(18) requires L multiplications to form the product 1
2L

ΛdL,k , the

padding of the resulting vector with L zeros, the DFT of the result-

ing vector, the DFT of x2L,k−(j−1)L, the product of the two DFTs,

and the (scaled) IDFT of this product. Note that at time k, only the

FFT of x2L,k needs to be computed; the FFTs of x2L,k−jL, j =
1, . . . ,M−1 have been computed at previous time instants. The

above procedure reduces the 2N(1+ 1
L
) computations per sample

for PN,k and rN,k (the first column of RN,k) to

2N

[
2 FFT(2L)

L2
+

4

L

]
+

FFT(2L)

L
(20)

computations per sample (FFT(L) signifies the computational com-

plexity associated with a FFT of length L) or basically O
(
N log

2
(L)

L

)

operations.

7.1. Fast Computation of the Filtering Errors using the FFT

In a block processing approach, also the filtering errors can be com-

puted more efficiently than by computing an inner product every

sample period. Indeed, consider the following vector of (block) a

priori filtering errors

ǫpN,L,k =




ǫHN (k−L+1|k−L)
...

ǫHN (k|k−L)


 = dL,k −XN,L,kHN,k−L

(21)

with ǫN (i|k) = d(i) −HH
N,k XN (i). We can use the same circular

matrix embedding and DFT techniques as in the previous subsec-

tion. Remark that the input data have been transformed before (in

the previous subsection) and that we only need to apply the inverse

DFT once after having summed up the M products in the frequency

domain. This leads to a computational complexity of

N

[
FFT(2L)

L2
+

2

L

]
+

FFT(2L)

L
(22)

per sample instead of N .

7.2. The SU RLS Algorithm

Instead of computing the filter WN,k from scratch every L samples

by solving the normal equations, we can exploit the recursions for

PN,k and RN,k to get a recursive solution

C̃N,k = λ−1R−1
N,k−L XH

N,L,k (23)

γ−1
N (k) = Λ−1 +XN,L,kC̃N,k (24)

R−1
N,k = λ−1R−1

N,k−L − C̃N,kγN(k)C̃H
N,k (25)

ǫpN,L,k = dL,k −XN,L,kHN,k−L (26)

γ−1
N (k) ǫN,L,k = ǫpN,L,k (27)

HN,k = HN,k−L + C̃N,k ǫN,L,k (28)

where ǫN,L,k is a vector of a posteriori errors:

ǫN,L,k =




ǫHN (k−L+1|k)
...

ǫHN (k|k)


 . (29)

While the Subsampled-Updating RLS algorithm thus obtained con-

stitutes a valid algorithm to provide the filter solution WN,k every

L samples, it does not represent much computational gain w.r.t. the

original RLS algorithm (L = 1). We could exploit the FFT tech-

nique introduced above to reduce the computational complexity in

equations (23),(24) and (26) by a factor O
(

L
log

2
L

)
. On the other

hand, we have to invert γ−1
N (k), a L × L matrix. Below, we shall

introduce a fast version of the SU RLS algorithm.

7.3. The FWSU RLS Algorithm

We shall transform the following update equations

RN,k = λRN,k−L +XH
N,L,kΛXN,L,k (30)

CN,k = R−1
N,kX

H
N,L,k (31)

ǫpN,L,k = dL,k −XN,L,kHN,k−L (32)

HN,k = HN,k−L +CN,k Λ ǫpN,L,k (33)

into the frequency domain. Introducing circulant and related embed-

dings:

Λ =

[
0 0
0 Λ

]
, W =

[
W 0
0 0

]
, W = IL ,

WM = IM ⊗W , HN,k =

(
IM ⊗

[
IL
0

])
HN,k ,

XN,2L,k =
[
XL,L,k XL,L,k−L · · ·XL,L,k−(M−1)L

]
.

(34)

Note that W HN,k = HN,k. Then one can derive similarly as in [8]

RN,k = λRN,k−L +X
H

N,2L,kΛ XN,2L,k (35)

CN,k = R
−1
N,kX

H

N,2L,k (36)

ǫpN,2L,k = d2L,k −XN,2L,kHN,k−L (37)

HN,k = HN,k−L +WM CN,k Λ ǫpN,2L,k . (38)

Now we pass to the frequency domain by taking DFTs of size 2L.

Let

Λ = F2LΛF
−1
2L ,W = F2LWF−1

2L , WM = IM ⊗W

HN,k = (IM ⊗ F2L) HN,k , d2L,k = F2Ld2L,k ,

X2L,k = CH
(
xH
2L,k

)
,

XN,2L,k =
[
X2L,k X2L,k−L · · ·X2L,k−(M−1)L

]
.

(39)



Then we get the FWSU RLS algorithm

RN,k = λRN,k−L +XH
N,2L,kΛ XN,2L,k (40)

CN,k = R−1
N,kX

H
N,2L,k (41)

ǫpN,2L,k = d2L,k −XN,2L,kHN,k−L (42)

HN,k = HN,k−L +W CN,k Λ ǫpN,2L,k (43)

Note that HN,k contains now the filter coefficients in the frequency

domain. Let P be a permutation matrix so that the M blocks of 2L
coefficients in HN,k get transformed to 2L blocks of M coefficients

in PHN,k . Due to overlap-save, the frequency response is oversam-

pled in frequency domain, containing 2L subbands at each of which

sits an FIR filter of M coefficients, combining input signal from M
consecutive frames (the subsampling factor in each subband is L).

PXH
N,2L,k is a 2L × 2L block diagonal matrix with blocks of size

M × 1, containing M consecutive input samples at each respective

subband. In [8], where a rectangular window Λ was used, the ma-

trix Λ was approximated to be Λ ≈ 1
2
I2L. However, the rank of Λ

is only L, half its size. Λ is a circulant matrix, containing the zero

padded DFT of the window in Λ. With a proper window design men-

tioned earlier, Λ can be approximated by a banded matrix if the DFT

of the window can be approximated by its main lobe. In this case we

have a modulated filterbank with the window as lowpass filter. Note

that due to the circulant nature, Λ is in principle a circulant banded

matrix. However, the triangles in the lower-left and the upper-right

corners can be neglected if the high frequencies (near half the sam-

pling frequency) are negligible in the input signal (by e.g. the use of

an anti-aliasing filter with a slightly reduced cutoff frequency). If Λ
is banded, then R is a banded block matrix with M ×M blocks. If

Λ has a main diagonal and B − 1 upper and lower diagonals, then

R has equally many block diagonals and its LDU triangular factor-

ization takes a complexity of O(N B2 M2) (as opposed to O(N3)
for a full matrix). The computation of the Kalman gain in (41) is

of similar complexity. The singularity of R will show up in a num-

ber of the diagonal entries in the diagonal factor being zero. For the

inversion then of R a pseudo-inverse can be used.

Note that the computation of the 2L error signals in the 2L sub-

bands occurs in a decoupled fashion in (42). The computation of

the filter outputs XN,2L,kHN,k−L however can be interpreted as

XN,2L,kWHN,k−L where W is again a circulant matrix, mixing

contributions from filters in neighboring subbands. If W can be ap-

proximated by a banded matrix, then this corresponds to the use of

cross-band filters as has been proposed for adaptive filtering in the

filterbank domain [3]. However, here the cross-band filters are pa-

rameterized in terms of the inband filters. Even though the error sig-

nals are computed per subband, the update of the filter coefficients

in (42) is coupled between neighboring subbands due do the Kalman

gain C not being block diagonal and the presence of Λ again.

The use of non-trivial windows for W also could be explored

further.
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