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ABSTRACT
The mapping of the functional networks within the brain is
a major step towards a deeper understanding of the the brain
function. It involves the blind source separation of obtained
fMRI data, usually performed via independent component
analysis (ICA). Recently, there is an increased interest for al-
ternatives to ICA for data-driven fMRI unmixing and notably
good results have been attained with Dictionary Learning
(DL) - based analysis. In this paper, the K-SVD DL method
is appropriately adjusted in order to cope with the special
properties characterizing the fMRI data.

Index Terms— Matrix Factorization, fMRI, Blind Source
Separation, Dictionary Learning

1. INTRODUCTION

Functional Magnetic Resonance Imaging (fMRI) [1] is a
powerful non-invasive tool for localizing and analyzing brain
activity. Most commonly it is based on blood oxygena-
tion level-dependent (BOLD) contrast, which translates to
detecting localized changes in the hemodynamic flow of
oxygenated blood in activated brain areas. This is achieved
by exploiting the different magnetic properties of oxygen-
saturated versus oxygen-desaturated hemoglobin.

In the brain, tasks involving action, perception, cogni-
tion, etc., are performed via the simultaneous activation of
a number of functional brain networks (FBN), which are en-
gaged in proper interactions in order to effectively execute
the task. Such networks are usually related to low-level brain
functions and they are defined as a number of segregated spe-
cialized small brain regions, potentially distributed over the
whole brain. These regions collaborate in order to coherently
perform a certain brain function [2]. The segregated brain
regions involved in a certain brain network are said to be in-
tegrated, [2], in the sense that irrespective of their anatom-
ical proximity or remoteness, they exhibit strong anatomi-
cal and/or functional connectivity. Functional connectivity is
often expressed as strong coherence in the activation time-
patterns of these regions. Examples of such brain networks
are the visual, sensorimotor, auditory, default-mode, dorsal
attention, and executive control networks.
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A challenging fMRI experimental procedure is the task-
free one, referred to as resting-state fMRI. In this case, there
is no correlation to previously known activation patterns, in-
duced by external stimulus to the subject, and, hence, the
steady-state functional analysis of the brain activity needs to
be realized blindly. Independent Component Analysis (ICA)
[3], which searches for functionally independent components
or “sources” in the recorded fMRI signal is the most com-
monly used method in this case.

Recently, there is an increased interest for alternatives to
ICA for data-driven fMRI unmixing. Notably good results
have been attained with Dictionary Learning (DL) - based
fMRI analysis, which can be grouped in two major categories.
Those dealing with the analysis of the fMRI data of a single
subject (e.g. of a certain person)[4, 5] and those that jointly
accommodate data of multiple subjects, e.g.,[6–8]. In a dif-
ferent approach [9], DL was applied not on the data matrix
itself but on correlations between columns of Y correspond-
ing to carefully selected Regions of Interest (ROIs). In this
paper, we focus on the single subject case and particularly to
DL based on the popular K-SVD (K-Singular Value Decom-
position) method [10,11]. The K-SVD is properly modified in
order to be rendered suitable for the analysis of fMRI data. In
particular, a mechanism for the detection and effective joining
of FBNs which are incorrectly split by conventional K-SVD
is proposed in order to comply with the segregation and inte-
gration properties of the FBN. Moreover, extra care is given
in order to cope well with machine artifacts.

2. PROBLEM DESCRIPTION

The data is collected during an fMRI experiment from suc-
cessive 3D brain volume scans. Relying on adequate post-
processing, which effectively compensates for possible time-
lags [1], it is fairly accurate to assume that each acquisition
is performed instantly. Therefore, the outcome of each scan,
is a number of, say n, values, quantifying the activation at
n points across the brain, at a certain time instance, say i.
These points (voxels) are spatially distributed on a 3D grid
and their values are collected in vector yi ∈ Rn. Such vectors
are also referred to as spatial maps. Considering t successive
acquisitions, the full amount of data is collected in a matrix
Y = [yT

1 ,y
T
2 , . . . ,y

T
t ]

T ∈ Rt×n. Hereafter, the notations,
Yi,· and Y·,j are used to denote the ith and the jth row and
column respectively. Moreover, YI,J , is the submatrix of Y



having the rows and columns indexed in vectors I ,J . Note
that, Yi,· are the voxel values at time instance i and Y·,j are
the values of the jth voxel along time.

Following the discussion in 1, FBNs networks are char-
acterized by specific regions (clusters of voxels) distributed
across the brain, which are activated synchronously. Accord-
ingly, brain networks can be described by spatial maps, sj ∈
Rn, having values different than, essentially, zero at those
indices corresponding to activated voxels only. Apparently,
vectors sj are sparse, i.e., they comprise mostly zeros (or
very close to zero). Assume that during an fMRI experiment,
a number of, say p, FBNs are activated and interact in order to
deal with the requested brain task and let these vectors being
collected as rows in matrix S ∈ Rp×n. If these FBN interact
linearly, then at any time instance, i, the corresponding fMRI
data vector, Yi,· = Ti,1S1,·+Ti,2S2,·+ · · ·+Ti,pSp,·, where
Ti,j expresses the contribution of the jth spatial map in the
formation of the ith row of Y . The rank of Y equals to p
and it can be factorized as Y = TS, where T ∈ Rt,p. The
columns T·,i of matrix T reveals the time courses associated
with the corresponding spatial maps signals Si,·.

The task of fMRI unmixing, is to estimate the spatial maps
corresponding to the FBNs, S, and their evolution in time de-
termined by T . This is essentially a matrix factorization (MF)
problem. There are numerous methods/approaches, which
are able to factor Y as the multiplication of two appropri-
ately sized matrices, Y = AB, however this factorization
is not unique. Indeed, since Y is rank deficient, all its col-
umn vectors lie on a p dimensional subspace1. For example,
any matrix A comprising p vectors, which span the column
space of Y , it can serve in the MF task when combined with a
proper matrix B. So for successful fMRI data analysis, con-
straints with respect to the structure of the estimated matrices
A and/or B need to be set in order, among the potentially infi-
nite number of A, B combinations, the MF method to return
a pair of matrices which is as close as possible to T , S. Such
constraints stem from a priori known information regarding
the true matrices. For example, in this paper matrix B, which
represents the spatial maps, is constrained to be sparse. In non
blind fMRI analysis methods, for example in General Linear
Model (GLM), A is predefined and related to Hemodynamic
Response Function (HRF) [1].

3. FMRI UNMIXING VIA DICTIONARY LEARNING

Dictionary learning (DL) is conventionally related to the
sparse representation / sparse coding problems. The objective
of sparse coding is to chose a few elementary signals, called
atoms, drawn from a pre-specified set of such signals, referred
to as dictionary, which better represents a certain signal y.
Let A be a dictionary matrix, i.e., having the dictionary atoms
as columns. A popular form that sparse coding can take is
mathematically described as follows [12, 13]:

min
b

∥y −Ab∥ s.t. ∥b∥0 ≤ k, (1)

1The columns have been centered in order to have zero mean

where ∥·∥0 is the ℓ0 pseudo-norm counting the number of
nonzero components of the unknown vector b and k is the
number of atoms, which are linearly combined to represent
y. Apparently, the better suited for a certain signal (or class
of signals) a dictionary is, the sparser the representations of
similar signals will be. Here comes the role of DL. Based on a
number of representative/training signals yi, i = 1 . . . n, DL
aims to train a dictionary, i.e., to find a set of atoms, which
can sparsely represent the training signals and concequently
any other similar signal. In matrix form, DL is described as
[10]:

min
A,B

∥Y −AB∥2F, s.t. ∥B·,j∥0 ≤ k, j = 1 · · ·n, (2)

where Y contains the training examples as columns and ∥·∥F
is the Frobenious norm. Moreover, a constraint on the dictio-
nary norm is necessary in order to avoid degenerate solutions,
with the unit-norm request for each atom being the most pop-
ular. Alternative DL forms are also possible, such as regu-
larized versions where the sparsity constraint is not explicitly
imposed on the columns of B [14].

The question that comes first in mind is why DL is po-
tentially suitable for fMRI unmixing. The answer is that as a
byproduct of the DL procedure, the produced atoms capture
high level features and intrinsic information about the batch
of training signals itself. Moreover, DL is inherently a con-
strained MF approach since it aims to factor Y as the product
of A, B with the latter having sparse columns. Accordingly,
B is likely to have sparse rows as well. This is a property
suitable to the fMRI case since the spatial maps, at least those
having a physiological origin, are sparse (see also discussion
in 1).

One of the most popular DL methods is the K-SVD,
which alternates between two learning stages until conver-
gence. In the first stage, B is estimated via a series of sparse
codings implemented column by column, i.e.

min
B·,j

∥Y·,j −AB·,j∥ subject to ∥B·,j∥0 ≤ k, (3)

∀j and the dictionary A is fixed to its latest estimate. In the
second stage, the dictionary atoms are updated and on the
same time, the nonzero values of B are further refined. De-
noting by zi and z̄i two vectors comprising the indices of the
zeros and the nonzeros of Bi,·, the second stage is described
by the following minimization problem,

min
A,B

∥Y −
p∑

i=1

A·,iBi,·∥2F s.t. Bi,zi = 0, i = 1, · · · , p, (4)

where the matrix product, AB in the Frobenious norm has
been equivalently written as the sum of p rank-1 matrices and
the constraint forces the updated matrix B to keep the same
support. Denote by E(i) the reconstruction error achieved
without the participation of the ith dictionary atom, i.e.,
E(i) = E−A·,iBi,·, where E = Y −AB. The original K-
SVD, minimizes (4) in p steps optimizing one dictionary atom
and the corresponding row of B restricted to z̄i, at a time. In



particular, for the ith dictionary atom, the best 1-rank approx-
imation of E(i)

z̄i
, is computed via SVD, i.e. E(i)

z̄i
= UDV T

and then A·,i = u1, and Bi,z̄i = d1v
T
1 , where u1, v1 are the

left and right singular vectors that correspond to the larger
singular value d1.

Although K-SVD has been proved to be one of the most
reliable and well performing algorithms in DL specialized
applications, it was recently shown that when it is used for
MF in the fMRI context, performs inferiorly than potentially
faster DL methods. A notable example is the Fast Incoherent
Dictionary Learning (FIDL) algorithm, [5], which is using
steepest descent iterations in order to update the matrices A
and B directly rather than in a column by column manner.
The enhanced performance that FIDL exhibits is due to the
fact that it complies better with the nature of the fMRI data.
First, the dictionary atoms are forced to be incoherent some-
thing that promotes the integration property of the FBNs and
second, the sparsity property is not enforced to each column
separately but to the whole matrix B. In this manner, spatial
components, i.e. rows of B, which are not sparse because, for
example are due to artifacts, are easier accommodated than in
the K-SVD case.

4. FMRI-SUITED K-SVD

Encouraged by the superior performance attained by the K-
SVD in several applications, we here further elaborate on this
method in order to render it suitable for fMRI unmixing. Ap-
parently, in order for a DL method to operate well on fMRI
data, a careful assessment on how well it complies with the
segregation and integration properties of the FBN, is neces-
sary. Moreover, extra care is required in order to cope well
with machine artifacts. Apart from the performance front,
low computational complexity is definitely a merit due to the
massive volume of fMRI data. Next, a modified K-SVD com-
plying with the above recommendations is proposed.

4.1. Detecting and Joining split FBNs

DL on fMRI data often leads to the undesirable behaviour
described next: Segregated brain regions corresponding
to the same FBN is possible to get split in several time-
course/spatial-map vectors. However, due to the fact that all
these regions are functionally associated, the corresponding
time-course vectors are going to be similar, i.e., correlated.
In FIDL, such splits are prevented due to the fact that the dic-
tionary atoms, i.e., the time courses, are forced to be uncorre-
lated using a properly modified cost function. Although there
are K-SVD variants which promotes incoherence among the
dictionary atoms, e.g., [15], when they are applied in fMRI
are unable to supersede FIDL or fast ICA performance [5].
Following a different route, here we incorporate in K-SVD a
different mechanism for detecting and joining together spatial
maps, which are likely to correspond to the same FBN.

In particular, after the dictionary update stage, the strictly
lower triangular Gram matrix containing the correlations

among the dictionary atoms is computed

Gi,j =

{
AT

·,iA·,j , i > j

0, otherwise
(5)

The larger an entry, in magnitude, |Gi,j | of the Gram matrix
is, the more likely for the corresponding time courses A·,i and
A·,j is to belong to the same FBN.

To this end, a user defined parameter µA ∈ [0, 1] is intro-
duced. Any pair of dictionary atoms having correlation larger
than µA ∈ [0, 1] are considered to belong to the same FBN.
The approach followed for detecting and joining together two
or more spatial maps is described next. The Gram matrix is
searched for at least one entry larger, in magnitude, than µA.
If such entry does not exist, then the algorithm proceeds to the
next K-SVD iteration. If exists, then the leftmost column of
the Gram matrix having such an entry, say this is the m̄th one,
provides all the necessary information about the spatial maps
that need to be merged. Denote as m a vector containing the
index m̄ plus the indices in which |G·,m̄|, is larger than µA.
Then the spatial maps at the rows of Bm,· as well as the corre-
sponding time courses, A·,m need to be merged because they
correspond to the same FBN. Denote by, b̄ and ā the spatial
map and the time course that results from the merging. In this
paper, b̄ and ā are chosen to be those optimizing

min
ā,b̄

∥A·,mBm,· − āb̄T ∥2F. (6)

Note that A·,mBm,· is the overall contribution of those spa-
tial maps indexed in m in explaining the data matrix Y . Hav-
ing decided that all these maps are parts of the same FBN,
then they should be replaced by a single time–couse/spatial
map pair. This is what (6) attempts to. The solution of the
above minimization task is given by the best rank-1 approxi-
mation of A·,mBm,·. It can be computed via SVD similarly
to the dictionary update stage of the original K-SVD.

The estimated FMN replaces one of the involved spatial
maps, say the m̄,i.e. A·,m̄ = ā and Bm̄,· = b̄. The rest
of those involved in the merging, i.e. those with indices in
m have their corresponding time courses replaced with ran-
domly selected columns of the error matrix E. This choice is
justified by the fact that E represents the residual which have
not been represented by the estimated matrices A and B, yet.
The associated rows of B will be filled by the sparse coding
stage in the next K-SVD iteration.

In a similar fashion, spatial maps which are found to be
highly correlated, i.e. corresponding to values in the Gram
matrix larger than a user defined value µB , are also being
merged. The physical reason for that is that it has been ob-
served that different FBNs do not overlap much, spatially. Ac-
cordingly, spatial maps which are highly correlated, meaning
that they have similar supports, is highly likely to correspond
to the same FBN, which have been duplicated, by mistake,
in the DL process. Such a condition is usually takes place
whenever, a time-course has been split in two or more parts.

4.2. Coping with machine induced artifacts

Real fMRI data do not only comprise of signals related to the
brain activity, known as signals of interest, but they also con-



tain signals related to machine-induced artifacts. The latter
include motion-related signals due to head movement, respi-
ration, cardiac pulsation, etc. There are also signals related to
noise artifacts from scanner drifts (slowly rising), electronic
interferences, etc. In most cases, these artifacts exhibits low
localization and are usually spread over wider brain areas ren-
dered, in this way, dense. Here, we exploit this property,
which need to be properly incorporated into the first stage
of the K-SVD, in order to impose the formation of a certain
number of, say r, dense rows in the spatial map matrix B. Pa-
rameter r is user defined and it should be roughly equal to the
number of components due to artifacts, which are expected.

Without loss of generality, the first r rows of B will be
forced to be dense. In the sparse coding stage of K-SVD, the
request for the first r components of B·,i, ∀i, to be nonzeros
is translated to a typical case of sparse reconstruction with
partly known support (PKS) [16]. In this paper, for the sparse
coding stage we use a low cost Orthogonal Matching Pursuit
(OMP) algorithm, [17], properly modified in order to comply
with the request above. In particular, the PKS-OMP can di-
rectly initiate from iteration r, setting the nonzero support set
accordingly.

4.3. Low computational complexity implementation

A critical issue related to fMRI unmixing is that of computa-
tional complexity which might be proved infeasible for sev-
eral techniques due to the large data matrices involved. For
this reason, in the proposed K-SVD variant the techniques
which have been proposed in [17] for the efficient imple-
mentaion of the original K-SVD have been adjusted to fit the
fMRI-suited K-SVD. Accordingly, the Batch-OMP is used in-
corporating the fact that the support is partially known, i.e. the
first r components are fixed to be nonzero.

From the discussion above it was pointed out that many
rank-1 approximations are required not only in the dictio-
nary updating stage but also when potential merging of spatial
maps is required. For this reason the SVD, even though gives
the exact solution to the problem, it had been replaced with
the approximate scheme proposed in [17].

5. PERFORMANCE EVALUATION

In this study, the synthetic albeit realistic fMRI data set used
in [18] was used. These data result from the mixture of eight
main sources depicted in the upper row of Fig. 1). The time
course for each component (lower row of Fig. 1) defines the
temporal characteristics of the corresponding source, namely
one task-related (S1), two transiently task-related (S2, S6)
and several artifact types (S3, S4, S5, S7, S8), including res-
piration, cardiac pulsation, scanner drift, background noise,
etc. These sources can be considered as spatial maps that are
activated according to their time course and mixed linearly to
produce the final (simulated) fMRI data.

The source signals in the upper row of Fig. 1 are vector-
ized and mixed according to the corresponding time courses
producing a data matrix Y ∈ R100×3600. Four methods are
fed with this data matrix in order to separate the 8 sources

Dsize=12 Ca Cm Cam
fastICA 0.776 (0.917) 0.849 (0.971) 0.812 (0.944)
FIDL 0.833 (0.961) 0.801 (0.921) 0.817 (0.941)

sparse GLM 0.702 (0.764) 0.714 (0.800) 0.708 (0.782)
Proposed 0.846 (0.950) 0.853 (0.950) 0.850 (0.950)

Table 1. Performance with Dictionary size 12

Dsize=20 Ca Cm Cam
fastICA 0.776 (0.917) 0.849 (0.971) 0.812 (0.944)
FIDL 0.836 (0.960) 0.792 (0.895) 0.814 (0.927)

sparse GLM 0.798 (0.914) 0.697 (0.793) 0.747 (0.853)
Proposed 0.862 (0.972) 0.861 (0.952) 0.861 (0.962)

Table 2. Performance with Dictionary size 20

blindly. That is, the fast ICA [19], the FIDL [5], the sparse
GLM [4] and the proposed method. In order for the perfor-
mance evaluation to be statistically reliable, the final results
are the outcome of the ensemble average of 20 independent
runs, where each run correspond to a different, randomly cho-
sen initialization of the algorithms.

The performance results are tabulated in the Tables 1 and
2, corresponding to dictionary sizes 12 and 20 respectively.
In particular, Ca is the mean absolute correlation over the 20
runs for the best-matched time courses, Cm is the mean ab-
solute correlation over the 20 runs for the corresponding acti-
vation maps and Cam is the mean of Ca and Cm. The mean
absolute correlation is a proper performance measure when-
ever the ground truth is known [18], such as in the current
study. Two values are shown for each case. One in paren-
thesis and one plain. In the latter, the mean correlation of all
the 8 sources have been taken, whether in the parenthesis the
mean concerns only the three sources directly related to brain
activations, i.e. sources S1, S2 and S6. For fastICA, the best
configuration included ’symmetric’ approach and ’skew’ non-
linearity (’pow3’ for brain-only sources experiments), with
stabilized algorithm in all cases. For FIDL the set up given
in section 4.2 in [5] was adopted since it concerns very simi-
lar data to the ones in this study. Notable improvements with
different parameter configurations where not observed apart
from parameter kmax. For best performance it was set to 50
and 10 for dictionary sizes 12 and 20, respectively.

For the proposed algorithm the free parameters where set
up to the following values: µA = 0.8, µB = 0.7, the sparsity
level in the sparse coding stage k = 8, i.e. equal to the rank
of the data matrix and the number of nonsparse rows, r = 3.
Note that both r and k are not the true values in the specific
data set which have four nonsparse rows and the number of
nonzeros per column varies from 4 to 6. Moreover, for the
approximate SVD, 20 iterations have been used.

The proposed algorithm, with limited exceptions, outper-
forms the rest of the evaluated algorithms. Two observations
are worthy to emphasize. First, the modifications which are
made in order to deal better in the fMRI context, led to signif-
icant performance improvement over the sparse GLM, which
in fact is the K-SVD without the proposed extensions. Sec-
ond, both ICA and FIDL favor either the spatial maps (ICA)
or the time courses (FIDL). On the contrary the proposed



Fig. 1. Spatial–aps and the corresponding time–courses

method exhibits similar performance with respect to both Ca
and Cm. This results a clear improvement when the average
Cam is considered.

With respect to computational complexity, although the
original K-SVD is quite heavy, the Batch-OMP and approxi-
mate SVD simplifications used here reduces it considerably.
It turns out that the proposed method has the same order of
complexity with FIDL, however, it converges much faster
leading to lower overall computational burden. In particular,
the results shown corresponds to 10 iterations of the proposed
algorithm whereas FIDL requires about 50 to converge (see
Fig. 2). In detail, the computational complexity analysis will
be presented elsewhere.

Fig. 2. Convergence speed of the proposed method over FIDL
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