
A REVERSIBLE JUMP MCMC ALGORITHM FOR PARTICLE SIZE INVERSION IN
MULTIANGLE DYNAMIC LIGHT SCATTERING

A. Boualem and M. Jabloun and P. Ravier
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ABSTRACT

The inverse problem of estimating the Particle Size Distribu-
tion (PSD) from Multiangle Dynamic Light Scattering mea-
surements (MDLS) is considered using a Bayesian inference
approach. We propose to model the multimodal PSD as a nor-
mal mixture with an unknown number of components (modes
or peaks). In order to achieve the estimation of these vari-
able dimension parameters, a Bayesian inference approach is
used and solved by the Reversible JumpMarkov Chain Monte
Carlo sampler (RJMCMC). The efficiency and robustness of
the method proposed are demonstrated using simulated and
experimental data. Estimated PSDs are close to the origi-
nal distributions for synthetic data. Moreover an improve-
ment of the resolution is noticed compared to the Clementi
method [1].

Index Terms— Particle Size Distribution, Multiangle
Dynamic Light Scattering, Inverse Problem, Bayesian Infer-
ence, MCMC, Reversible Jump.

1. INTRODUCTION

The determination of the size distribution of particles dis-
persed in a liquid in the range of sub-micrometers and
nanometers is nowadays performed by using the dynamic
light scattering (DLS) technique [2]. The increasing success
of DLS comes from the fact that it is easy to handle, non-
destructive, fast, and it requires no calibration process [3–5].
Several instruments are commercially available, among them
the Nano DS from CILAS.
The DLS technique is based on the analysis of the tempo-

ral fluctuations of light scattered by the illuminated particles
at a given angle. The particle size distribution (PSD) is re-
trieved by inverting the time autocorrelation function (ACF)
of these fluctuations. This problem is a highly ill-posed
inverse problem where small noise in data leads to large
changes in the estimated PSD. Several methods have been
proposed to retrieve the PSD from DLS data such as the cu-
mulants method [6], CONTIN [7], truncated singular-value
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decomposition [8], non-negative least squares [9] and maxi-
mum entropy [10]. In general, satisfying results are achieved
for monomodal PSDs. The main drawback of these meth-
ods is the poor capacity to discriminate peaks of multimodal
PSDs. Indeed, the best results are obtained for populations
with comparable intensity contributions and spaced at least
by a factor 2 in diameter. Moreover, these methods are very
sensitive to noise and suffer from lack of robustness. Multi-
angle dynamic light scattering (MDLS) allows getting more
information about the studied sample by processing the whole
DLS data acquired at different angles. Several works have
demonstrated that MDLS provides more robust, reproducible
and accurate PSD estimation than single-angle DLS, espe-
cially for polydisperse and/or multimodal samples [11–13].
In the last years, statistical techniques based on Bayesian

inference became useful tools for solving DLS inverse prob-
lem [1, 14, 15]. In [1], the Bayesian method was applied
to the Z-average (harmonic intensity averaged) diameters in
order to retrieve the PSD, these Z-average diameters being
first determined using the cumulants method. However, the
errors on the Z-average diameters propagate for multimodal
samples, which leads to large errors in the estimated PSD.
In the present paper, we propose to directly estimate the

PSD fromMDLSmeasurements. The main idea is to describe
each component (mode) of the PSD by a mean, a standard
deviation and a weight. Thus, the PSD is modelled as a
Gaussian mixture. The number of the mixture components
is assumed to be unknown, which allows flexibility in the
proposed method. To estimate this unknown number of com-
ponents and their parameters, we propose to use a Bayesian
inference approach and we derive the posterior probability
density function (PDF) of interest. Because of the complex-
ity and high dimension of this posterior PDF, closed-form
expressions of Bayesian estimators can not be derived. Fur-
thermore, the dimension of the parameters vector depends on
the unknown number of components. Therefore, a Reversible
Jump Markov Chain Monte Carlo (RJMCMC) algorithm [16]
is used to generate samples distributed according to the pos-
terior PDF of interest. This dimension matching strategy
allows moves between parameter spaces with different di-
mensions which is clearly relevant for the proposed PSD
model. We demonstrate the efficiency and robustness of the



proposed method by applying it to simulated noisy data for
monomodal and bimodal PSDs and experimental data and we
compare our results with Clementi’s ones [1]. We note that
the model parameters vector using the proposed approach is
of small size compared to that of the Clementi method.
The paper is organized as follows. Sections 2 and 3 detail

the DLS theory and the proposed Bayesian inversion method
with the RJMCMC algorithm, respectively. In section 4,
the estimation results from simulated and experimental data
are presented and compared with those obtained with the
Clementi method [1]. Finally, Section 5 concludes and dis-
cusses work in progress.

2. DLS THEORY

DLS measurements involve the analysis of the time ACF of
scattered light performed by a digital correlator. The normal-
ized intensity ACF g(2)θ (τ) measured is related to the normal-
ized electric field ACF g(1)θ (τ) by the Siegert relation [3]

g(2)θ (τ) = 1 + β|g(1)θ (τ)|2, (1)

where τ is the time delay. β(< 1) is an instrumental factor.
For a polydisperse sample, g(1)θ (τ) is shown to be the

summation of the normalized intensity-weighted PSD h(D)
with exponential decay functions [3], where D is the hydro-
dynamic diameter of the spherical particles

g(1)θ (τ) =

∫
∞

0

h(D) exp(−Γ0,θ

D
τ) dD. (2)

The value Γ0,θ = 16πn2 sin2(θ/2)kBT

3λ2
0η

depends on the scattering
angle θ and on other experimental conditions (Boltzmann
constant kB , absolute temperature T , wavelength of the inci-
dent light in vacuum λ0, refractive index n and viscosity η of
the medium).
Since the scattered intensity has an angular dependence,

the intensity-weighted PSD h(D) are angle-dependent too.
Cancelling this angular dependence is achieved by consid-
ering the number-weighted PSD f(D) which are angle-
independent. The relation is given by [1, 17]

g(1)θ (τ) =
1

Iθ

∫
∞

0

f(D)CI,θ(D) exp(−Γ0,θ

D
τ)dD, (3)

where CI,θ(D) represents the fraction calculated through the
Mie theory [17] of light intensity scattered at θ by a single
spherical particle of diameter D. Iθ =

∫
∞

0
f(D)CI,θ(D)dD is

a proportionality constant ensuring g(1)θ (0) = 1.
In the present paper, we assume for the sake of simplic-

ity that the unknown size distribution can be described as a
normal mixture distribution with

f(D) =

k∑
i=1

wi√
2πσi

exp

(
− (D − μi)

2

2σ2
i

)
, (4)

where wi, μi and σi are respectively the weight, the mean
and the standard deviation of the ith normal component. The
number of components, k, is supposed unknown. For identi-
fiability, we adopt the following labelling: μ1<μ2<· · ·<μk.

We denote w
(k) = [w1, · · · , wk]

T , μ(k) = [μ1, · · · , μk]
T

and σ(k) = [σ1, · · · , σk]
T . T denotes the transpose operator.

The aim of the next section is to estimate the unknown
number of components k and the parameters w(k), μ(k) and
σ

(k) using a Bayesian inference approach.

3. PROPOSED BAYESIAN INVERSION METHOD
WITH RJMCMC

3.1. Observation model
In practice, the MDLS measurements are acquired at different
scattering angles {θr, r = 1, . . . , R}, R is the total number
of scattering angles. For each angle θr, g

(2)
θr

(τ) is measured at
discrete time delays {τj , j = 1, . . . ,Mr},Mr being the total
number of points at angle θr. Let us consider the following
model of the MDLS observations

g̃(2)θ1
(τj) = g(2)θ1

(τj) + w1(j), j = 1, · · · ,M1 ,

...
g̃(2)θr

(τj) = g(2)θr
(τj) + wr(j), j = 1, · · · ,Mr ,

...
g̃(2)θR

(τj) = g(2)θR
(τj) + wR(j), j = 1, · · · ,MR ,

(5)

where g̃(2)θr
(τj) is the measured time ACF at θr and g

(2)
θr

(τj) is
the noise-free time ACF related to the PSD (or to the param-
eters k,w(k), μ(k) and σ(k)) by (1), (3) and (4). The additive
noise wr(j) are assumed to be independent (white) and nor-
mally distributed, with zero mean and variance σ2

n,r at the

angle θr. We consider the vector g̃(2) = [g̃
(2)T

1 , . . . , g̃
(2)T

R ]T

where g̃(2)
r = [g̃(2)θr

(τ1), . . . , g̃
(2)
θr

(τMr
)]T for r = 1, . . . , R.

We denote σ2
n
=

[
σ2
n,1, · · · , σ

2
n,R

]T .

3.2. Bayesian Model

In the Bayesian inference approach proposed for MDLS in-
verse problem, all quantities incorporated in the mathematical
model ((4) and (5)) are considered as random variables with
probability densities. The joint posterior PDF of variables k,
w

(k), μ(k), σ(k) and σ2
n
can be written as

p
(
k,w(k),μ(k),σ(k),σ2

n
|g̃(2)

)
=

p
(
g̃(2)|k,w(k),μ(k),σ(k),σ2

n

)
p(k)p(w(k)|k)p(μ(k)|k)p(σ(k)|k)p(σ2

n
)

p
(
g̃(2)

) ,

(6)

where p (g̃(2)|k,w(k),μ(k),σ(k),σ2
n

) is the likelihood function
and p(k) is the prior probability density on k. p(w(k)|k),
p(μ(k)|k) and p(σ(k)|k) are the prior probability densities
conditioned to k of the parameters w(k), μ(k) and σ

(k), re-
spectively. p(σ2

n
) expresses prior information about the noisy

measurements. p
(
g̃
(2)

)
is a normalizing constant.

By taking into account the noise independence assump-
tion and assuming the independence between the measure-
ments, the joint distribution (6) simplifies to give

p
(
k,w

(k)
,μ

(k)
,σ

(k)
,σ

2

n
|g̃(2)

)
∝ p(k)p(w

(k)|k)p(μ(k)|k)p(σ(k)|k)

×
R∏

r=1

[
p(σ

2
n,r)p

(
g̃
(2)
r |k,w(k)

,μ
(k)

,σ
(k)

, σ
2
n,r

)]
. (7)



The white Gaussian assumption of noise (zero mean and vari-
ance σ2

n,r) allows to write the likelihood function for each θr

p
(
g̃
(2)
r |k,w(k)

,μ
(k)

,σ
(k)

, σ
2
n,r

)
=

(√
2πσn,r

)−Mr
exp

(
− χ2

r

2σ2
n,r

)
,

(8)
with χ2

r =
Mr∑
j=1

(
g̃(2)θr

(τj) − g(2)θr
(τj)

)2.
We now detail the chosen prior distributions. For k, we

use a uniform prior discrete distribution between 1 and a
specified maximum number of components kmax. The used
prior distributions on w

(k), μ(k) and σ
(k) are such that all

the parameters are drawn independently:
wi ∼ U(0, 1), μi ∼ U(0, μmax) and p(σi)=

1
ln(σmax/σmin)σi

with
(σmin≤σi≤σmax) and 0 otherwise. Then, the resulting prior
probability densities conditioned to k are

p(μ
(k)|k) =

{[
1

μmax

]k
, 0 < μ

(k) ≤ μmax,

0 otherwise,
(9)

p(σ
(k)|k) =

⎧⎪⎨
⎪⎩

k∏
i=1

1
ln(σmax/σmin)σi

, σmin ≤ σ
(k) ≤ σmax,

0 otherwise.
(10)

The used prior for the noise variance is chosen to be the Jef-
frey’s prior [18], p(σ2

n,r) ∝
1

σ2
n,r
for r = 1, . . . , R.

Finally, we have the following expression for the joint
posterior PDF

p
(
k,w

(k)
,μ

(k)
,σ

(k)
,σ

2

n
|g̃(2)

)
∝

R∏
r=1

1

σ
(Mr+2)
n,r

exp

(
− χ2

r
2σ2

n,r

)

kmax

k∏
i=1

[
μmax ln

(
σmax
σmin

)
σi

] .
(11)

To cancel the nuisance parameters, we marginalize the
joint posterior PDF with respect to σ2

n
. As a result, we have

(see Appendix A)

p
(
k,w

(k)
,μ

(k)
,σ

(k)|g̃(2)
)

∝

R∏
r=1

[
χ2
r

]−Mr
2

kmax

k∏
i=1

[
μmax ln

(
σmax
σmin

)
σi

] . (12)

Since this posterior PDF is highly multivariate and
known up to a multiplicative constant, we should use a
Markov chain Monte Carlo (MCMC) sampler. Since we
deal with a varying dimension problem where classical
Metropolis-Hastings MCMC methods are not valid, we use
the approach termed reversible jump MCMC algorithm elab-
orated in [16]. In the next sub section, we detail the RJMCMC
algorithm used to generate samples from the target posterior
PDF (12).

3.3. Reversible Jump MCMC Algorithm

We propose to use a similar RJMCMC algorithm to the one
introduced in [19] with little modifications. One sweep in the
proposed algorithm consists of the following moves:
(a) Update the weights vector w(k);
(b) Update the means μ(k) and the standard deviations σ(k);
(c) Split one mixture component into two, or merge two into

one.

In moves (a) and (b), there is no change of k. We then use
classical MCMC samplers. For updating the weights, we
use the multi-stage Gibbs sampler [18]. The weight of a
component i is updated as follow. We generate a random
u ∼ N (0, σ2

w) and new candidates are set as w∗
i = wi + u

and w∗
i+1 = wi+1 − u. The new weights w∗

i and w∗
i+1

are accepted with the probability min
(
1,

R∏
r=1

[
χ2∗
r /χ2

r

]−Mr
2

)
.

This step is repeated for i = 1, ..., k − 1. The parame-
ters μ

(k) and σ
(k) are updated in one step by using the

Metropolis-Hastings algorithm [18]. The used instrumen-
tal densities q(μ(k)∗|μ(k)) and q(σ(k)∗|σ(k)) are chosen as
Gaussian distributions with N (μ(k), σ2

μ) and N (σ(k), σ2
σ)

respectively. μ(k)∗ and σ(k)∗ are accepted with the probabil-
ity min

(
1,

p(μ(k)∗|k)p(σ(k)∗|k)

p(μ(k)|k)p(σ(k)|k)

R∏
r=1

[
χ2∗
r /χ2

r

]−Mr
2

)
.

In the move (c), we make a random choice between a
split or a merge move. In split move, a randomly chosen
component i∗ of the mixture is replaced by two new com-
ponents labelled i1 and i2. This makes a jump from model
with k components (3k parameters) to model with (k + 1)
components (3(k + 1) parameters). The other components
are kept unchanged. The parameters of the new components
are created using the same proposal proposed in [18]. To
satisfy the dimension matching condition [16], we generate
the auxiliary variables u1, u2, u3 ∼ U(0, 1), and take

wi1 = u1wi∗ , wi2 = (1− u1)wi∗ ,

μi1 = u2μi∗ , μi2 =
wi∗−u2wi1

wi∗−wi1
μi∗ ,

σi1 = u3σi∗ , σi2 =
wi∗−u3wi1

wi∗−wi1
σi∗ .

(13)

The reverse move (merge) consists in the combination
of two components (i1, i2), randomly chosen and adjacent
(μi1 < μi2 with no other μj in [μi1 , μi2 ]), and replaced by a
new component labelled i∗, reducing k by 1. The other com-
ponents are kept unchanged. Since split and merge moves
must form a reversible pair (a bijection) [16], then we have

wi∗ = wi1 + wi2 ,
μi∗ =

wi1

wi∗
μi1 +

wi2

wi∗
μi2 ,

σi∗ =
wi1

wi∗
σi1 +

wi2

wi∗
σi2 .

(14)

The acceptance probabilities for split (from k to k + 1)
and merge (from k + 1 to k) moves are min (1, A) and
min

(
1, A−1

)
respectively, where

A =
π(k+1)k p

(
k + 1,w(k+1),μ(k+1),σ(k+1)|g̃(2)

)
πk(k+1) p (k,w(k),μ(k),σ(k)|g̃(2))

|J | . (15)

πk(k+1) is the move probability from a model with k compo-
nents to a model with k+1 components. Respect to πk(k+1)+
πk(k−1) = 1, we choose π1(2) = 1, πkmax(kmax−1) = 1 and
otherwise πk(k+1) = 0.5. |J | is the absolute value of the de-
terminant of split transform Jacobian given by

|J | =
∣∣∣∣ ∂(w(k+1),μ(k+1),σ(k+1))

∂(w(k),μ(k),σ(k), u1, u2, u3)

∣∣∣∣ = w3
i∗μi∗σi∗

(1− u1)2
. (16)



In order to derive estimates of the PSD mixture parame-
ters from the generated samples, we propose to use the max-
imum a posteriori estimator for k, k̂ = max(p(k|g̃(2))) and
the posterior expectation conditioned to k = k̂ for the other
parameters, ŵ = E[p(w|k = k̂, g̃(2))], μ̂ = E[p(μ|k =

k̂, g̃(2))] and σ̂ = E[p(σ|k = k̂, g̃(2))].

4. RESULTS AND DISCUSSIONS

In this section, we examine the proposed RJMCMC algo-
rithm for estimating monomodal and bimodal PSDs through
simulated and experimental MDLS data. For all simulated
and real data, we used latexes with refractive index 1.59, dis-
persed in pure water (refractive index 1.33 and viscosity η =
0.89 mPa.s). We used a vertically-polarized laser of wave-
length λ0 = 638 nm. The temperature was stabilised at
298.15 K. The algorithm was run with the following settings,
kmax = 5, μmax = 2000 nm, σmin = 0.2 nm, σmax =
200 nm, σw = 0.05, σμ = 10 and σσ = 1. The parameters
estimates are extracted from 400000 sweeps after a burn-in
period of 100000 sweeps. Estimation results are compared
with those obtained with the Clementi method [1].

4.1. Simulated MDLS data

MDLS data were simulated as follow. First, the noise-free
time ACFs g(2)θr

(τj) were simulated from the correspond-
ing PSD using (1), (3) and (4). Then, the noisy time ACFs
g̃(2)θr

(τj) were simulated by adding a white Gaussian noise (5)
with σn,r = 0.001 for all the scattering angles.
The RJMCMC algorithm is first tested with a monomodal

Gaussian PSD with μ = 200 nm and σ = 20 nm. The scat-
tering angles are 30◦, 60◦, 90◦, 120◦ and 150◦. Performing
Monte Carlo simulations with 50 independent runs of noise
gave the following results. For 47 runs (94%), RJMCMC
algorithm has successfully estimated the correct number of
modes (k̂ = 1). For those runs, the obtained statistics of the
(mean; standard deviation) estimates are (199.9 ± 0.3 nm;
20.1±0.4 nm) with RJMCMC algorithm vs (196.1±3.4 nm;
26.8 ± 4.4 nm) with Clementi method. These results show
higher accuracy for estimating monomodal Gaussian PSD
with the RJMCMC algorithm than with the Clementi method.
To validate these results for multimodal PSDs, RJMCMC

algorithm is also tested with a bimodal PSD Gaussian mixture
with the values w1 = 0.6, μ1 = 800 nm and σ1 = 10 nm for
the first mode and w2 = 0.4, μ2 = 1000 nm and σ2 = 25 nm
for the second mode. The scattering angles are 30◦, 60◦,
80◦, 90◦, 100◦, 120◦ and 150◦. The estimation results of one
noise run are shown in Figure 1. The posterior distribution
of k depicted in Figure 1(a) gives k̂ = 2 which is the true
number of modes. The paramters estimates from the gen-
erated samples (Figures 1(b), 1(c) and 1(d)) are ŵ1 = 0.6,
μ̂1 = 799.5 nm, σ̂1 = 8.7 nm, ŵ2 = 0.4, μ̂2 = 1001.4 nm
and σ̂2 = 20.6 nm. The reconstructed PSD using (4) from
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Fig. 1. Estimation results using RJMCMC algorithm from simulated MDLS
data of the bimodal PSD. (a) Estimated posterior distribution of k. (b), (c)
and (d) last 50000 sweeps, conditioning on k = 2 of the weights, means
and standard deviations respectively. (e) Comparison between the true and
estimated PSD with the RJMCMC algorithm and the Clementi method [1].

these estimated parameters is shown in Figure 1(e) and com-
pared with the one estimated with the Clementi method.
RJMCMC algorithm gave a better PSD estimate than the
Clementi method.
Performing Monte Carlo simulations with 50 independent

runs of noise gave the following results. For 46 runs (92%),
RJMCMC algorithm has successfully estimated the correct
number of modes (k̂ = 2). For those runs, statistics of the
mixture parameters estimates are reported on Table 1. The
results show a higher accuracy for the parameters estimated
with the RJMCMC algorithm than with the Clementi method.
For the standard deviation parameters that are usually diffi-
cult to estimate, RJMCMC algorithm gave good estimates,
but with less precision compared to the other parameters.

Mode 1 Mode 2
w1 (%) μ1 (nm) σ1 (nm) w2 (%) μ2 (nm) σ2 (nm)

expected 60 800 10 40 1000 25
RJMCMC 60±0.5 800.0±1.1 8.2±3.6 40±0.5 1000±2.6 23.2±4.0
Clementi 65±0.7 807.2±0.8 25.2±0.8 35±0.7 1008.8±1.9 37.8±2.0

Table 1. Statistics (mean±std) of estimation results of bimodal PSD
Gaussian mixture, comparison between RJMCMC algorithm and Clementi
method (Statistics obtained using 46 independent Monte Carlo noise runs).

4.2. Experimental MDLS data

The experimental MDLS data were acquired using the Nano
DS equipment from CILAS. The studied sample was a bi-
modal mixture of polystyrene latex spheres with nominal di-
ameters (standard deviation) of 800 nm (5 nm) and 1000 nm
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Fig. 2. Estimation results using RJMCMC algorithm for real MDLS data of
bimodal PSD (800 nm and 1000 nm). (a) Estimated posterior distribution of
k. (b) Comparison between the estimated PSDs with the RJMCMC algorithm
and the Clementi method [1].

(10 nm). The ACFs were measured at the scattering angles
65◦, 70◦, 80◦, 90◦, 95◦, 100◦ and 115◦. The estimation re-
sults are shown in Figure 2. The estimated number of modes
from the posterior distribution of k depicted in Figure 2(a)
k̂ = 2 is in good agreement with the announced number of
modes. The parameters estimates from the generated samples
are ŵ1 = 0.19, μ̂1 = 809 nm, σ̂1 = 6.4 nm, ŵ2 = 0.81,
μ̂2 = 968 nm and σ̂2 = 5.4 nm. Compared to the PSD
estimated with the Clementi method, the reconstructed PSD
(Figure 2(b)) from these estimated parameters seems to be the
closest to the expected one.

5. CONCLUSIONS

A new approach for estimating multimodal PSDs fromMDLS
measurements is proposed. The PSD is modelled as a Gaus-
sian mixture with an unknown number of modes. The esti-
mation of the model parameters is achieved using a Bayesian
inference approach solved by a RJMCMC algorithm without
any prior knowledge about the number of modes. Analysis of
simulated and experimental data has shown higher accuracy
and robustness for estimating multimodal PSDs compared to
the Clementi method [1]. In future works, limitations of the
proposed method for the estimation of asymmetric PSDs and
its resolution in terms of PSD peaks ratio will be determined.

A. APPENDIX

The marginalization step is given by

p
(
k,w

(k)
,μ

(k)
,σ

(k)|g̃(2)
)

=

∫ ∞

0

· · ·∫ ∞

0

p
(
k,w

(k)
,μ

(k)
,σ

(k)
,σ

2

n
|g̃(2)

)
dσ

2
n,1 · · · dσ2

n,R. (17)

Therefore, we can write

p
(
k,w

(k)
,μ

(k)
,σ

(k)|g̃(2)
)

∝

R∏
r=1

∫ ∞
0

1

σ
(Mr+2)
n,r

exp

(
− χ2

r
2σ2

n,r

)
dσ2

n,r

kmax

k∏
i=1

[
μmax ln

(
σmax
σmin

)
σi

] .

(18)
By making the variable change x = 1/σ2

n,r, we have∫ ∞

0

1

σMr+2
n,r

exp

(
−χ2

r

2σ2
n,r

)
dσ

2
n,r =

∫ ∞

0

x
Mr
2

−1
exp

(
−χ2

rx

2

)
dx

= Γ

(
Mr

2

)[
χ2
r

2

]−
Mr
2

. (19)

By replacing (19) in (18), we get the expression of (12).
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